Прикладная фотохимия
Учим химию / Учим химию / Прикладная фотохимия Прикладная фотохимия

Фотохимия - наука о химических превращениях веществ под действием электромагнитного излучения: ближнего ультрафиолетового (~ 100-400 нм), видимого (400-800 нм) и ближнего инфракрасного (0,8 - 1,5 мкм).

Исследования химического действия излучения на различные вещества и попытки его теоретического истолкования начались с конца 18 в., когда Дж. Сенеби высказал предположение о том, что необходимая для достижения определенного химического эффекта продолжительность действия света обратно пропорциональна его интенсивности. В 19 в. параллельно происходило открытие новых реакций органических и неорганических веществ под действием света и физико-химическое исследование механизма и природы фотохимических реакций. В 1818 T. Гротгус отверг гипотезу о тепловом действии света, предположив аналогию в воздействии на вещество света и электричества и сформулировав принцип, согласно которому причиной химического действия может быть только тот свет, который поглощается веществом (закон Гротгуса). Дальнейшими исследованиями было установлено, что количество продукта фотохимической реакции пропорционально произведению интенсивности излучения на время его действия (P. Бунзен и Г. Роско, 1862) и что необходимо учитывать интенсивность только поглощенного, а не всего падающего на вещество излучения (Я. Вант-Гофф, 1904). Одно из важнейших достижений фотохимии - изобретение фотографии (1839), основанной на фотохимическом разложении галогенидов серебра.

Принципиально новый этап в развитии фотохимии начался в 20 в. и связан с появлением квантовой теории и развитием спектроскопии. А. Эйнштейн (1912) сформулировал закон квантовой эквивалентности, согласно которому каждый поглощенный веществом фотон вызывает первичное изменение (возбуждение, ионизацию) одной молекулы или атома. Вследствие конкуренции химических реакций возбужденных молекул и процессов их дезактивации, а также обратного превращения нестабильных первичных продуктов в исходное вещество, химические превращения претерпевает, как правило, лишь некоторая доля возбужденных молекул. Отношение числа претерпевших превращение молекул к числу поглощенных фотонов - квантовый выход фотохимической реакции. Квантовый выход, как правило, меньше единицы; однако в случае, например, цепных реакций он может во много раз (даже на несколько порядков) превышать единицу.

В России большое значение имели в начале 20 в. работы П.П. Лазарева в области фотохимии красителей и кинетики фотохимических реакций. В 40-е гг. А.Н. Терениным была высказана гипотеза о триплетной природе фосфоресцентного состояния, играющего важную роль в фотохимических реакциях, и открыто явление триплет-триплетного переноса энергии, составляющее основу одного из механизмов фотосенсибилизации химических реакций.

Использование достижений квантовой химии, спектроскопии, химической кинетики, а также появление новых экспериментальных методов исследования, в первую очередь методов изучения очень быстрых (до 10-12 с) процессов и короткоживущих промежуточных веществ, позволило развить детальные представления о законах взаимодействия фотонов с атомами и молекулами, природе возбужденных электронных состояний молекул, механизмах фотофизических и фотохимических процессов. Фотохимические реакции протекают, как правило, из возбужденных электронных состояний молекул, образующихся при поглощении фотона молекулой, находящейся в основном (стабильном) электронном состоянии. Если интенсивность света очень велика [более 1020 фотонов/ (с·см2)], то путём поглощения двух или более фотонов могут заселяться высшие возбужденные электронные состояния и наблюдаются двух- и многофотонные фотохимические реакции. Возбужденные состояния не являются лишь "горячей" модификацией их основного состояния, несущей избыточную энергию, а отличаются от основного состояния электронной структурой, геометрией, химическими свойствами, поэтому при возбуждении молекул происходят не только количественные, но и качественные, изменения их химического поведения. Первичные продукты реакций возбужденных молекул (ионы, радикалы, изомеры и т.п.) чаще всего являются нестабильными и превращаются в конечные продукты очень быстро.

Для качественного и количественного исследования продуктов используют всевозможные аналитические методы, в т. ч. оптическую спектроскопию и радиоспектроскопию. Для определения дозы облучения и квантовых выходов применяют актинометрию. Свойства короткоживущих возбужденных состояний обычно изучают методами оптической эмиссионной (флуоресцентной и фосфоресцентной) и абсорбционной спектроскопии. Особенно большое значение для исследования механизмов фотохимических реакций имеют импульсные методы: импульсный фотолиз, лазерная спектроскопия и др. Эти методы позволяют изучать кинетику первичных реакций возбужденных молекул, нестабильные промежуточные продукты и кинетику их превращений.

Практическое применение фотохимии связано с фотографией, фотолитографией и иными процессами записи и обработки информации, промышленным и лабораторным синтезом органических и неорганических веществ, синтезом и модификацией полимерных материалов, квантовой электроникой (фотохимические лазеры, затворы, модуляторы), микроэлектроникой (фоторезисты), преобразованием солнечной энергии в химическую.

Фотохимические процессы играют очень важную роль в природе. Фотосинтез обеспечивает существование почти всех живых организмов на Земле. Подавляющую часть информации об окружающем мире человек и большинство животных получают посредством зрения, механизм которого основан на фотоизомеризации родопсина, запускающей цепь ферментативных процессов усиления сигнала и тем самым обеспечивающей чрезвычайно высокую чувствительность (вплоть до регистрации отдельных фотонов). Озон образуется в верхних слоях атмосферы из кислорода под действием коротковолнового (<180 нм) излучения Солнца по реакции:

O2 + h O + O  O3

Он поглощает излучение Солнца в области 200-300 нм, губительно действующее на живые организмы.