Новые направления в фотохимии. Лазерная нанотехнология
Учим химию / Прикладная фотохимия / Учим химию / Прикладная фотохимия / Новые направления в фотохимии. Лазерная нанотехнология Новые направления в фотохимии. Лазерная нанотехнология

Позиционирование атомов фокусированным лазерным лучом

Все компьютерные микропроцессоры изготавливаются на кремниевой подложке методом фотолитографии (см. выше, фоторезисты). Увеличивая частоту колебаний световой волны (переходя от зеленого света к синему, а потом и к ультрафиолетовому), можно уменьшить ширину линии рисунка, т. е. и размеры интегральной схемы в целом.

На сегодняшний день, однако, возможности этой технологии исчерпаны: следующие за ультрафиолетовыми рентгеновские лучи трудно сфокусировать, и потому рентгеновская литография используется крайне редко. Один из вариантов решения проблемы - использование самого света в качестве шаблона. Дж. Дж. Макклеланд со своими коллегами из Национального института стандартов и технологии (США) применил этот метод, чтобы изготовить решетку из хромированных точек на маленькой кремниевой пластине. Размер точки - всего 80 нм - значительно меньше разрешающей способности, обеспечиваемой ультрафиолетовыми лучами. С дальнейшим развитием этой технологии станет возможным размещение 2 млрд интегральных схем на площади в 1 см2 всего за несколько минут.

В основе данной технологии лежит использование в качестве линзы лазерного луча. Плотный узкий пучок атомов хрома, получаемый при нагревании навески хрома в СВЧ-печи, пропускают сквозь пучок лазерного излучения, частота которого близка к частоте собственных колебаний атомов хрома. В результате атомы теряют энергию, т. е. охлаждаются. Непосредственно перед кремниевой подложкой эти атомы попадают в еще один лазерный пучок - примерно той же частоты, что и первый. Будучи отраженным от зеркала, этот пучок образует стоячую волну, т. е. волну, пучности и узлы которой фиксированы в пространстве.

Натолкнувшись на такую стоячую волну, атомы хрома вынуждены двигаться либо вверх, к гребню волны, либо вниз, к узлу между гребнями. Таким образом, волна играет роль линзы, отклоняя проходящие сквозь нее атомы от прямой траектории на половину длины волны и выстраивая их в аккуратные линии на поверхности кремниевой пластины. Если пластину осветить двумя взаимноперпендикулярными лазерными пучками, как это сделал Макклеланд, линии превратятся в правильную совокупность точек - решетку. Следующий этап - сканирование лазером поверхности для создания произвольного рисунка интегральных наносхем.

Внедрение данной технологии в промышленность связано, однако, с рядом нерешённых проблем:

- не все атомы фокусируются;

- вероятно, будет невозможно стравливать материал, не разрушая рисунка соединений.

Тем не менее, возможность создания схем с шириной линии рисунка в 10 раз меньшей, чем сегодняшние, позволяет считать данную технологию весьма перспективной.

Смотрите также

Ниобий
Ниобий — это химический элемент XX в. в прямом и переносном смысле. Хотя как элемент его открыли в самом начале XIX в. (1801 г.), но как металл был получен лишь век спустя (1907 г.), а сейчас без н ...

Химическая термодинамика
В результате химической реакции выделяется или поглощается энергия, так как реакция сопровождается перестройкой энергети­ческих уровней атомов или молекул веществ, участвующих в ней, и веще ...

Материал для химического кружка
Изложенный в дипломной работе материал может быть использован в школьном курсе химии при подготовке и проведении интегрированных уроков (химия и биология, химия и экология) или в химическом кружке. ...