В работе [51] исследовано поведение полиэлектролитов в биологическом окружении. Авторы для изучения взаимодействия клеток с полиэлектролитами использовали модельные системы - бислойные липидные везикулы. Поведение системы поликатион-везикула было исследовано в зависимости от строения и линейной плотности заряда поликатиона, фазового состояния мембраны, содержания заряженного липида в везикулах и их размера, а также ионной силы раствора. Показано, что данное взаимодействие может сопровождаться латеральной агрегацией липидов, резким ускорением трансмембранной миграции липидных молекул (флип-флопом), торможением обмена липидов между везикулами, встраиванием адсорбированных макромолекул в везикулярную мембрану, а также агрегацией и разрушением везикул. Поликатионы, адсорбированные на мембране только за счет электростатических взаимодействий, могут быть количественно вытеснены в раствор при увеличении ионной силы раствора или при добавлении избытка полианиона-конкурента. Это приводит к восстановлению как исходного распределения липидов в мембране, так и межвезикулярного обмена липидов. Гидрофобизация основной цепи поликатиона или модификация цепи боковыми гидрофобными радикалами обеспечивает стабильность комплекса поликатион-везикула в водно-солевых растворах и в присутствии значительных избытков отрицательно заряженных полиионов за счет встраивания гидрофобных фрагментов поликатиона в гидрофобную часть везикулярной мембраны.
Полученные результаты представляют интерес с точки зрения прогнозирования возможных последствий контакта полиэлектролитов и биоцидных веществ на их основе с клеточной поверхностью. Таким образом, дестабилизация мембраны ведет к изменению локализации и фосфолипид- ного окружения ферментов, связанных с мембраной, что естественно отражается на их активности. При этом несомненный интерес представляет выяснение влияния катионных полиэлектролитов на бактериальные ферменты, обусловливающие устойчивость бактериальных клеток к антибиотикам.
Оказалось , что катионные полиэлектролиты взаимодействуют также и с бактериальными ферментами. Обнаружено ингибирующее действие четвертичных аммониевых солей полидиэтиламиноэтилметакрилата и полиди- метиламиноизопропилметакрилата на ферменты «агрессии» (факторы пато- генности) золотистого стафилококка - плазмокоагулазу и гиалуронидазу, которые обуславливают его патогенность [50]. Эти полимеры также подавляли способность стафилококкового а-токсина гемолизировать эритроциты кролика. Катионные полиэлектролиты проявляют ингибирующее действие также в отношении бактериальных ферментов, инактивирующих антибиотики; пенициллиназу, гидролизующую амидную связь Р-лактамного кольца пенициллинов и превращающую пенициллины в неактивные пенициллои- новые кислоты. Свойство катионных полиэлектролитов подавлять активность бактериальных ферментов, инактивирующих антибиотики, а также повышать проницаемость клеточной стенки и цитоплазматической мембраны может способствовать усилению действия антибиотиков в отношении резистентных (устойчивых к действию антибиотиков) штаммов бактерий, так как при этом создаются условия, облегчающие достижение антибиотиком его мишени в клетке. Поэтому катионные полиэлектролиты представляют интерес не только как новые антимикробные вещества, но и как мем- бранотропные биологически активные полимеры-носители для низкомолекулярных биоцидных веществ.
Процесс производства труб из ПЭ методом экструзии
...
Алюминий
АЛЮМИНИЙ (лат. Aluminium; от "alumen" —
квасцы), Al, химический элемент III группы периодической системы, атомный номер
13, атомная масса 26,98154.
...
Основные химические законы
Когда впервые
обнаруживается, что некоторая идея объясняет или коррелирует многие факты, то
такую идею называют гипотезой. Гипотезу можно подвергнуть дальнейшей
проверке и экспериментально ...