Под собственной физилогической активностью полимеров обычно понимают активность, которая связана с полимерным состоянием и не свойственна низкомолекулярным аналогам или мономерам [45]. С учетом сказанного выше, механизмы проявления собственной физиологической активности могут включать в себя как важнейшую составляющую физические эффекты, связанные с большой массой, осмотическим давлением, конфор- мационными перестройками и др., а также могут быть связаны с межмолекулярными взаимодействиями и с биополимерами организма. Многие биополимеры организма являются полианионами (белки, нуклеиновые кислоты, ряд полисахаридов), а биомембраны также имеют суммарный отрицательный заряд. Взаимодействие между противоположно заряженными полиэлектролитами протекают кооперативно, причем образующиеся в результате поликомплексы достаточно прочны. Известно, что наибольшее значение имеют при таких взаимодействиях плотность заряда и молекулярная масса [4, 5, 17-19]. Если же говорить о биоцидных свойствах, то важную роль в этом случае играет знание механизма действия.
Последовательность элементарных актов летального действия полиэлектролита на бактериальные клетки может быть представлены следующим образом [5]:
адсорбция поликатиона на поверхности бактериальной клетки;
диффузия через клеточную стенку;
связывание с цитоплазматической мембраной;
разрушение или дестабилизация цитоплазматической мембраны;
выделение из клетки компонентов цитоплазмы;
гибель клетки.
В первую очередь, это касается поликатионов, так как биомембраны имеют отрицательный суммарный заряд, хотя отрицательно заряженные в целом клеточные мембраны имеют изолированные поликатионные области, на которых могут сорбироваться полианионы [45].
При изучении влияния различных факторов на уровень антимикробной активности катионных полиэлектролитов было показано [46], что их активность возрастает с увеличением числа ионогенных групп в макромолекуле [5]; молекулярная масса и характер распределения ионогенных групп по цепи не влияют существенно на уровень антимикробной активности. Использование полиэлектролитов с люминисцентной меткой [47] при изучении взаимодействия полимеров с эритроцитами и бактериальными клетками показало, что полимер быстро связывается клеточной стенкой и цитоплазматической мембраной, а затем уже проникает в цитоплазму и ядро клетки. При этом увеличивается проницаемость клеточной мембраны как для низкомолекулярных [5, 30, 31], так и высокомолекулярных веществ [48]. Повышение концентрации полиэлектролитов до 50-100 мкг мл"1 и более приводит к интенсивному повреждению клеточной мембраны, обнаруживаемому по выделению из клеток белков и нуклеиновых кислот [49-50].
Ключевым моментом в механизме действия катионных полиэлектролитов на биологические мембраны является электростатическое взаимодействие с отрицательно заряженными фосфолипидами и белками, локализованными в ней. Следствием этого является нейтрализация заряда мембраны и клетки в целом, а также изменение соотношения гидрофобных и электростатических взаимодействий, стабилизирующих мембрану.
Химия в поисках альтернативных источников энергии
Неважно, когда на
Земле закончится нефть, - через пятьдесят, сто или двести лет. Ясно, что
источник энергии исчерпаем в принципе и, следовательно, ему рано или поздно
придётся искать альтер ...
Получение, свойства и применение амидо-аммониевой соли малеопимаровой кислоты на основе малеинизированной канифоли
Республика Беларусь
располагает обширной сырьевой базой для развития лесохимической промышленности.
Одним из видов такого сырья является канифоль, которую получают из живицы путем
отгонки с ...