Структурная идентификация и планирование кинетического эксперимента
Статьи и работы по химии / Автоматизированная система для исследования кинетики быстрых химических реакций / Статьи и работы по химии / Автоматизированная система для исследования кинетики быстрых химических реакций / Структурная идентификация и планирование кинетического эксперимента Структурная идентификация и планирование кинетического эксперимента
Страница 1

Если предыдущие ступени решения обратной кинетической задачи сводились только к математическим проблемам, то задача структурной идентификации требует привлечения всех дополнительных сведений об изучаемой системе, которые может собрать исследователь. При этом задача так и не нашла строгого решения, т.е. при помощи описанных выше методов легко опровергнуть ту или иную кинетическую схему, но доказательства правильности часто оказываются только косвенными. Поэтому при решении этой задачи необходимо как можно шире применять данные других методов, например, ЯМР и ЭПР, квантовохимические расчеты переходного состояния реакции и т.п.

Прежде чем начать кинетический анализ, следует четко определить реакцию, механизм которой хотят исследовать. Это означает, что обо всех реагентах и продуктах должна существовать качественная и количественная информация. Изучение материального баланса приводит к стехиометрическому уравнению, и количество израсходованных веществ должно соответствовать количеству образовавшихся конечных продуктов. Как правило, знание стехиометрии более чем компенсирует время, затраченное на получение дополнительных экспериментальных данных, которые потребуются в отсутствие этих знаний. О необходимости точных сведений о рассматриваемой реакции свидетельствует, например, тот факт, что для большинства типов реакций расходование реагента соответствует одному и тому же закону скорости, например, закону первого порядка. Поэтому знание лишь одного закона уменьшения концентрации исходного вещества далеко не достаточно для представления о механизме реакции.

Далее, нужно искать свойства реакционной смеси, которые меняются по мере того, как происходит реакция, и могут быть использованы как показатель хода реакции и ее глубины. Одно из требований состоит в том, чтобы выбранное свойство менялось при изменении концентрации каким-либо простым путем, желательнее всего линейно. Теоретически можно использовать любое свойство, степень изменения которого достаточна. Это означает, что такое свойство должно заметно различаться для реагентов и продуктов. Удобно выбрать свойство, изменение которого можно записывать автоматически и непрерывно. Обычно мы говорим «кривая c(t)», хотя, как правило, вместо абсолютных концентраций используются пропорциональные им физические величины. Частицы, ответственные за свойство, по которому следят за ходом превращения, мы будем называть кинетически измеряемыми частицами.

Основная цель анализа кривых c(t) состоит в том, чтобы найти математическое уравнение, которое описывает форму кривых, т.е. уравнение скорости. Основой для вывода такого уравнения служит сравнение кривых c(t), полученных из серии экспериментов при разных начальных концентрациях реагентов, так называемых экспериментальных серий. Число их зависит от числа компонентов реакции. На скорость реакции могут влиять исходные реагенты, продукты реакции (включая интермедиаты), катализатор, растворитель и т.д. Если в реакции участвует несколько реагентов, то условия подбирают таким образом, чтобы все они, кроме одного, находились в большом избытке. Во время реакции концентрации этих избыточных реагентов остаются практически постоянными. Таким образом, уменьшение концентрации реагента, присутствующего в недостатке, изучается как бы изолированно. Этот метод известен как метод изоляции; он преследует цель выделить элементарный процесс или какую-то простую реакцию из всего процесса в целом. За таким взятым в недостатке реагентом или за продуктом реакции удобно следить кинетически. В тех случаях, когда в реакции отсутствует интермедиат или присутствующий интермедиат очень реакционноспособен, уменьшение концентрации реагента во времени соответствует увеличению концентрации продукта (при условии равенства стехиометрических коэффициентов). В любом случае очень полезно, хотя бы в нескольких сериях измерений, проверить, соответствуют ли кинетические кривые расходования реагента кинетическим кривым накопления продукта. Однако следует отметить, что согласованность между

-d[A]/dt и d[P]/dt сама по себе не является доказательством отсутствия интермедиата. Так, в случае, когда свойства интермедиата лишь незначительно отличаются от свойств исходного реагента, на практике оба вещества измеряют вместе. Получающаяся зависимость от времени, естественно, будет соответствовать зависимости для образования продукта. Таким образом, несогласованность между -d[A]/dt и d[P]/dt ясно указывает на наличие интермедиата. В этом случае для получения полной кинетической информации измерения во времени как для реагента, так и для продукта должны быть измерены в отдельных экспериментальных сериях. В целях экономии времени и реактивов в эксперимент следует включать ровно столько компонентов, сколько необходимо для однозначной характеристики системы.

Страницы: 1 2

Смотрите также

Пластические массы
Термин "пластические массы" появился в конце XIX в. Первые промышленные материалы были изготовлены на основе нитроцеллюлозы (1862-65) и казеина (1897). Развитие современных реакто ...

Растворение твердых веществ
Тема контрольной работы «Растворение твердых веществ» по дисциплине «Химическая технология неорганических веществ». Под термином растворение понимают гетерогенные реакции, протекающие ме ...

Исследование распределения электропроводности в пересжатых детонационных волнах в конденсированных взрывчатых веществах
...