Дисперсность
Страница 5

- второй закон Фика.

На рис. представлена одномерная диффузия, определяющая движение вещества в одном направлении. Возможна также двух- и трехмерная диффузия вещества (диффузия вещества в двух и трех направлениях), описываемая уравнением: , где I – вектор плотности диффузионного потока; grad v – градиент поля концентрации.

Для трехмерной диффузии, по второму закону Фика, запишем: .

Для двумерной диффузии в правой части уравнения ограничиваемся выражениями для х и y.

Значения коэффициента диффузии для видов её распределяются так: ионная – D = 10-8 м2/с; молекулярная - D = 10-9; коллоидных частиц - D = 10-10. Отсюда видно, что диффузия коллоидных частиц затруднена по сравнению с двумя другими видами. Так, скорость диффузии частиц карамели (дисперсная фаза – коллоидный раствор) в 100 – 1000 раз меньше скорости диффузии молекул сахара (молекулярный раствор). Соответственно в газах D увеличивается до 10-4, в твердых телах снижается до 10-12 м2/с.

Количественно диффузия определяется коэффициентом диффузии, связанным со средним сдвигом соотношением: ; - продолжительность диффузии.

Диффузия высокодисперсных частиц совершается беспорядочно с большей вероятностью в сторону меньшей концентрации. При выводе соотношения приняты следующие допущения: частицы дисперсной фазы движутся независимо друг от друга, между ними отсутствует взаимодействие; средняя энергия поступательных движений частиц равна 0,5 kT.

Используя формулу определения среднего сдвига, коэффициент диффузии можно представить в виде: (k – константа Больцмана, равная ). Если D известен, найдем размер частиц:

; Þ чем больше размер частиц, тем меньше коэффициент диффузии, менее интенсивна сама диффузия.

Диффузия в полной мере проявляется у высокодисперсных систем (10-9 – 10-7 м), ослаблена у среднедисперсных (10-7 – 10-5 м) и практически отсутствует у грубодисперсных систем (>10-5 м). Коэффициент диффузии зависит и от формы частиц, что не учтено в уравнении . Поэтому формула определяет размер только коллоидных шарообразныхчастиц (или приведенный к шарообразному размер частиц неправильной формы).

Тема 1.2.3. Осмотическое давление

1

2

3

m1

m2

Р и с. 1.2.3.1. Схема осмоса: 1 – сосуд с раствором; 2 – емкость с растворителем; 3 – полупроницаемая мембрана

p, Н

При разделении двух растворов различной концентрации или раствора и чистого растворителя полупроницаемой перегородкой (мембраной) возникает поток растворителя от меньшей концентрации к большей, выравнивающей концентрацию. Этот процесс называется осмосом

.

На схеме (рис. 1.2.3.1) в сосуд с полупроницаемой перегородкой 3, помещен раствор 1. Перегородка пропускает дисперсионную среду (растворитель), но является препятствием для коллоидных частиц (растворенных веществ). Снаружи перегородки – чистый растворитель 2. Концентрация раствора по обе стороны перегородки различна. Внутри сосуда 1 часть раствора занимают молекулы растворенного вещества (частицы дисперсной фазы) Þ концентрация растворителя там меньше, чем в емкости 2 с чистым растворителем.

За счет диффузии жидкость из области более высокой концентрации перемещается в область меньшей концентрации (из емкости 2 в сосуд 1). С кинетической точки зрения это обусловлено тем, что число ударов молекул о мембрану растворителя со стороны чистого или более разбавленного раствора больше, чем со стороны раствора, что и заставляет перемещаться растворитель через поры мембраны туда, где его меньше (т.е. в область раствора).

Страницы: 1 2 3 4 5 6

Смотрите также

Газификация углей
                В связи со сложной экологической ситуацией современная технология ищет новых решений химических, энергетических проблем, проблем добычи природных ископаемых.          ...

Сорбируемость меди на бурых углях, сапропелях и выделенных из них гуминовых кислотах
Проблема очистки воды для хозяйственно - питьевых нужд от токсикантов, в частности, от соединений тяжелых металлов, является весьма актуальной природоохранной проблемой в Тульском регионе, в ...

Классы неорганических веществ. Растворы электролитов. Размеры атомов и водородная связь
...