Механизмы гомогенного катализа.
Статьи и работы по химии / Гомогенный катализ / Статьи и работы по химии / Гомогенный катализ / Механизмы гомогенного катализа. Механизмы гомогенного катализа.
Страница 2

Поскольку ион металла при образовании координационной связи выступает как электрофильный компонент, этот тип катализа полу­чил название электрофильного катализа.

2. Если в образовании комплекса участвуют две молекулы суб­страта, катализатор обеспечивает их пространственное сближение, благоприятное для протекания реакции. Например, ионы меди катализируют реакцию между нитрилом изоникотиновой кислоты и трис(оксиметил)-аминометаном (трисом), описываемую стехиометрическим уравнением.

Основными факторами при этом являются поляризация связи С=N в нитриле, облегчающая нуклеофильную атаку на атом (в результате этого ионы Сu+ являются катализаторами щелочного гидролиза нитрила), и одновременная координация обоих субстра­тов, обеспечивающая в лимитирующей стадии процесса атаку ОН-группы триса на поляризованный атом С нитрила (замыкание цикла с отщеплением аммиака происходит, по-видимому, в последующих стадиях, возможно, уже вне комплекса; стрелкой показано направление атаки атома О триса на атом С нитрила).

3. Помимо чисто пространственного эффекта сближения реаги­рующих групп, образование комплекса с катализатором может облегчить синхронное протекание разрыва и образования несколь­ких новых связей, необходимое для превращения молекул субстра­тов в молекулы продуктов. Например, это имеет место, когда для протекания реакции необходимо синхронное каталитическое уча­стие и кислотной и основной групп. Так, превращение циклической формы 2,3,4,6-тетраметилглюкозы в открытую форму включает протонирование атома кислорода в цикле, расщепление связи С—О, синхронную передачу протона какому-либо основанию и образова­ние двойной связи С=О. Обращение процесса может привести к изме­нению конфигурации при атоме С2 циклической формы (реакция мутаротации):

Реакция катализируется эквимолярной смесью фенола (кислота НА) и пиридина (основание В). Учитывая, что образовавшийся в комплексе катион пиридиния (ВH+) должен передать протон фе­нолят-иону (А-), легко видеть, что в этой реакции разрываются четыре связи и образуются четыре новые связи.

Гораздо более эффективным катализатором реакции мутаротации является α-оксипиридин, несмотря на то, что ОН-группа в этом соединении, выполняющая роль донора H+, менее кислая, чем ОН-группа фенола, а атом азота в α-оксипиридине, выполняющий роль акцептора протона, менее основен, чем в пиридине. Это слу­чай бифункционального катализа. Протонирование атома кисло­рода циклической формы тетраметилглюкозы, разрыв связи С—О и отщепление протона от гидроксильной группы при атоме С с об­разованием двойной связи протекают синхронно в восьмицентровом циклическом активированном комплексе:

Наиболее полно и совершенно все перечисленные факторы, обес­печивающие воздействие катализатора на субстраты, используются в биологических катализаторах — ферментах. В настоящее время в результате успешного развития рентгеноструктурного анализа белков установлена полная пространственная структура ряда фер­ментов и их комплексов с субстратами. В качестве примера на рис. 1 приведена схема взаимодействия фермента карбоксипептидазы с субстратом.

Карбэксипептидаза катализирует отщепление С-кониевой амино­кислоты от пептидной цепи, причем наиболее эффективно отщеп­ляются кислоты, содержащие гидрофобные ароматические остатки:

На рис. 1 изображен концевой фрагмент расщепляемой поли­пептидной цепи и функциональные группы фермента, принимаю­щие то или иное участие в каталитическом процессе. Два имидазольных кольца (остатки аминокислоты гистидина) и карбоксиль­ная группа остатка глутаминовой кислоты координированы с ионом цинка, заряд которого тем самым наполовину нейтрализован. Протонированная гуанидиновая группа (остаток аминокислоты арги­нина) взаимодействует с ионизованной концевой карбоксильной группой субстрата. Этот же концевой аминокислотный остаток связан своим ароматическим кольцом с тремя гидрофобными ради­калами фермента (остатки аминокислот изолейцина, тирозина и глутамина).

Страницы: 1 2 3

Смотрите также

Резиновые смеси
В качестве наполнителей смесей из фторкаучуков применяют печную и термическую сажу, графит, тонкодисперсную SiO2, асбест, мел, силикаты кальция, магния, бария, фторид кальция. Количество наполнител ...

Происхождение ископаемых углей
Практически невозможно установить точную дату, но десятки тысяч лет назад человек, впервые познакомился с углём, стал постоянно соприкасаться с ним. Так, археологами найдены доисторические ...

Кинетика химических и электрохимических процессов
...