Спектрофотометрический анализ

Водные растворы L-аскорбиновой кислоты бесцветны и не поглощают в видимой области спектра, но при нейтральных значениях рН в спектре оглощения наблюдается сильный сигнал при 265 нм. Это обстоятельство было бы очень удобно использовать для непосредственного спектрофотометрического анализа, но в большинстве случаев растворы витамина С содержат вещества, также поглощающие в УФ-области, что в некоторой степени ограничивает использование этого метода. В течение ряда лет были сомнения относительно точного значения молярного коэффициента экстинкции при 265 нм; в разных работах давались значения от 7500 до 16650. Причина таких различий объясняется быстрым окислением L-аскорбиновой кислоты в нейтральных и слабокислых растворах атмосферным кислородом. До тех пор, пока спектры поглощения снимаются в строго анаэробных условиях, неизбежны низкие величины, так как поглощение продуктов окисления, при 265 нм незначительно.

Сложности появляются при наличии в растворе ионов Си + и других переходных металлов, являющихся потенциальными катализаторами окисления молекулярным кислородом. Их следует удалять или связывать в комплекс путем добавления хелатирующего агента этилендиаминтетрауксусной кислоты. Положение максимума поглощения зависит от рН и в кислых растворах смещается в область 245 нм. На основании величины поглощения при этой длине волны в растворе соляной кислоты и хлорида калия определяли содержание витамина С в безалкогольных напитках и некоторых лекарственных препаратах, где незначительны примеси других веществ. Часто бывает желательно определить в одном и том же растворе содержание дегидроаскорбиновой и L-аскорбиновой кислот. Дегидроаскорбиновая кислота поглощает в УФ-области при 220 нм, но величина молярного коэффициента экстинкции значительно ниже и составляет 720. Таким образом, в этом случае чувствительность спектрофотометрического анализа почти в 20 раз меньше, чем в случае L-аскорбиновой кислоты. Позже мы увидим, что этот факт имеет далеко идущие последствия при хроматографическом разделении L-аскорбиновой и дегидроаскорбиновой кислот.

Для того чтобы преодолеть проблемы, связанные с присутствием в животных и растительных тканях веществ, поглощающих в УФ-области, проводился поиск реагентов, дающих специфические цветные реакции с L-аскорбиновой кислотой и(или) продуктами ее окисления. Титриметрический метод с использованием дихлорфенолиндофенола, описанный выше, был адаптирован для колориметрии. Для спектрофотометрического определения можно использовать и окрашенное 2,4-динитрофенилгидразиновое производное витамина. Обнаружено, что это же самое соединение образуется с дегидроаскорбиновой и 2,3-дикетогулоновой кислотами, являющимися продуктами окисления L-аскорбиновой кислоты (рис. 7.3). Эта реакция имеет широкое практическое применение для определения содержания дегидроаскорбиновой кислоты и известна под названием метода Роу. Он заключается во взаимодействии раствора дегидроаскорбиновой кислоты с 2,4-динитрофенилгидразином в специфических условиях при 37°С в течение 4 ч, в результате чего образуется озазон — производное 2,3-дикетогулоновой кислоты. Эту же реакцию можно использовать и для определения содержания L-аскорбиновой кислоты, предварительно окислив ее до дегидроаскорбиновой кислоты над активированным углем (норит) раствором брома и т. п. При добавлении к озазону сильной кислоты образуется раствор красного цвета, поглощающий при 530 нм.

Основу для колориметрического и спектрофотометрического методов анализа создает также ярко-синий цвет продукта реакции L-аскорбиновой кислоты с соединениями диазония (рис. 7.4).

Альтернативный подход заключается в использовании флуоресценции продукта конденсации дегидроаскорбиновой кислоты с о-фенилендиамином. Облучение образующегося хиноксалина на длине волны 350 нм приводит к его флуоресценции при 427 нм. Обычно методика включает окисление L-аскорбиновой кислоты до дегидроаскорбиновой, и затем суммарное количество определяется спектрофлуорометрически.

Смотрите также

Химическая термодинамика. Скорость химических процессов
...

Аэробное окисление углеводов. Биологическое окисление и восстановление
Аэробное окисление углеводов - основной путь образования энергии для организма. Непрямой - дихотомический и прямой - апотомический. Прямой путь распада глюкозы – пентозный цикл – приво ...

Алюминий
АЛЮМИНИЙ (лат. Aluminium; от "alumen" — квасцы), Al, химический элемент III группы периодической системы, атомный номер 13, атомная масса 26,98154. ...