Основными, относительно элементарными процессами, имеющими место при осаждении полимерных слоев из активной газовой фазы, являются диспергирование исходного полимера концентрированным потоком энергии (ионов, электронов, электромагнитного излучения), перенос летучих продуктов диспергирования в вакууме и их взаимодействие с поверхностью, приводящее к их адсорбции, образованию центров полимеризации и росту высокомолекулярных частиц [4, 23–25].
Физико-химическое состояние активной газовой фазы, а, соответственно, и процессы взаимодействия ее с поверхностью, свойства образующихся покрытий зависят, прежде всего, от условий и режимов диспергирования полимера, приводящего к образованию летучих продуктов. В технологии полимерных покрытий генерация летучих продуктов возможно различными приемами: при пиролизе (термодеструкции) [25], воздействии на поверхность полимера потока ионов [26], электронов [27], электромагнитного излучения [28]. Специфические процессы, протекающие при реализации данных технологических приемов, определяют значительное различие в кинетике диспергирования, составе образующейся газовой фазы и, в конечном счете, в свойствах формируемых покрытий.
Проблемы аналитического описания массо- и теплопереноса, сопровождающих воздействие концентрированных потоков энергии на различные материалы, достаточно подробно рассмотрены в работах [29, 30]. Отметим, что задача расчета кинетики разрушения мишени ставится и при рассмотрении ионного травления при производстве интегральных схем, лазерной и плазменной резки, плавления и других технологических процессов. Вместе с тем полимерные материалы и процессы, протекающие при воздействии на них потоков энергии, имеют ряд особенностей, что определяет необходимость отдельного их изучения. Из-за сложности и многофакторности данных процессов при построении аналитических моделей важным является определение, прежде всего, механизма разрушения макромолекул, температурных полей в поверхностных слоях мишени. В общем случае процесс диспергирования может быть описан системой взаимосвязанных дифференциальных уравнений, определяющих, соответственно, массо-, зарядо-, и теплоперенос [31]. Решение такой системы уравнений возможно только численными методами. Однако задача может быть значительно упрощена в результате анализа конкретных условий диспергирования. Так, например, степень влияния диффузионных процессов, температурной неоднородности на кинетику образования летучих продуктов может быть определена на основании сопоставления характерных параметров процессов: времени диффузионного переноса ; времени возбуждения макромолекул
; времени релаксации температуры
; среднего времени воздействия частиц потока на молекулы полимера
; длительности интервала между последовательными воздействиями на поверхность частиц потока
, где Rп - максимальная глубина проникновения заряженных частиц в полимерную мишень; D – коэффициент диффузии; Vp-скорость диспергирования мишени (м/с);
- коэффициент температуропроводности; V0 – скорость движения частиц потока; jп – плотность потока частиц; Sв – сечение взаимодействия молекул полимера с частицей падающего на поверхность потока.
Получение препаратов протеиназы penicillium wortmannii 2091 и
исследование их физико-химических свойств.
Известно, что
микроорганизмы синтезируют богатые набором ферментов комплексы. Поэтому важным
этапом в получении препаратов направленного действия является изучение условий
их выделения, очистки от ...
Дмитрий Иванович Менделеев
...
Растворение твердых веществ
Тема контрольной работы
«Растворение твердых веществ» по дисциплине «Химическая
технология неорганических веществ».
Под термином растворение
понимают гетерогенные реакции, протекающие ме ...