Осаждение тонких полимерных покрытий из активной газовой фазы
Страница 3

При воздействии лазерного излучения на ПТФЭ основной вклад в диспергирование, по-видимому, вносят процессы термодеструкции. В работе [33] численными методами решено уравнение теплопроводности, учитывающее движение границы раздела и особенности поглощения излучения в поверхностных слоях полимеров. При проведении расчетов принято во внимание различие теплофизических характеристик аморфной и кристаллической фаз полимера. Показано, что по этой причине скорость диспергирования в локальных участках поверхности мишени может изменяться в два и более раза. Следовательно, наблюдаемое экспериментально селективное разрушение поверхности полимера при действии на него излучения СО2-лазера, образование кристаллических «нитей» [28] может быть объяснено в рамках тепловой модели.

Электронно-микроскопические исследования морфологических особенностей роста ряда полимерных покрытий показали, что при высокой скорости диспергирования уже на начальных стадиях процесса осаждения покрытий имеет место образование макрочастиц, близких по форме к сферической и имеющих примерно одинаковый размер [31]. Наиболее вероятной причиной их формирования является полимеризация в газовой фазе в результате столкновения летучих фрагментов макромолекул. Проведенные оценки показали, что при таких режимах процесса выполняется соотношение lк > λ (lк – характерный размер камеры, λ – длина свободного пробега фрагментов), указывающее на правомочность данных представлений. Если же в процессе обработки полимера концентрированным потоком энергии в поверхностном слое наблюдается образование пузырей из летучих продуктов, то внутри таких газовых образований всегда lк >λ и в его объеме протекают процессы вторичной полимеризации. При этом, как показывают расчеты, значение длины свободного пробега незначительно зависит от массы фрагментов макромолекул, образующихся при диспергировании.

В работе [31] сформулирована модель роста фрагментов в результате неупругого столкновения их в газовой фазе с активными частицами. Для параллельного потока частиц, распространяющегося в направлении х, установлено, что средний объем частиц в газовой фазе

, (1)

где: средний объем фрагмента; jn, ja – плотность потока фрагментов и активных частиц; k – константа.

Если же поток летучих частиц диспергирования является расходящимся, то изменение линейной плотности частиц в радиальном направлении обусловлено не только процессами полимеризации, но и изменением заполняемого ими объема. В этом случае

Vк =kVo`jn,o ro{1‑ro/r exp[-jak (r-ro)]+rojak[E1(jakro) – E1(jak2)]}, (2)

где jn,o – плотность потока фрагментов у поверхности мишени; E1(х) – интегральная показательная функция.

Анализ (1) и (2) показывает, что при малых значениях х объем частиц линейно возрастает при увеличении пути, пройденного частицей: Vк= Vo(1+kх). При х >> λ рост частицы практически прекращается, и ее максимальный объем составляет Vк= Vo(1+ jn,o /ja). Отметим, что при создании в камере неоднородных электрических и магнитных полей, электрических разрядов, физико-химические процессы имеют более сложный характер. Наблюдается, в частности, пространственное перераспределение массовых потоков, изменение активности частиц в процессе их движения.

Страницы: 1 2 3 4

Смотрите также

Иммобилизованные ферменты
...

Кремнийорганические полимеры
Полимером называется органическое вещество, длинные молекулы которого построены из одинаковых многократно повторяющихся звеньев - мономеров. Размер молекулы полимера определяется степень ...

Методика проведения потенциометрического титрования.
Рассмотрим процесс потенциометрического титрования сильной кислоты раствором сильной щелочи. ...