Химически азот довольно инертен и при комнатной температуре реагирует только с металлом литием с образованием твердого нитрида лития Li3N. В соединениях проявляет различные степени окисления (от –3 до +5). С водородом образует азотистоводородную кислоту HN3. Соли этой кислоты — азиды. Азид свинца Pb(N3)2 разлагается при ударе, поэтому его используют как детонатор, например, в капсюлях патронов. Галогениды азота неустойчивы и легко разлагаются при нагревании (некоторые — при хранении) на простые вещества. Так, NI3 выпадает в осадок при сливании водных растворов аммиака и иодной настойки. Уже при легком сотрясении сухой NI3 взрывается:
2NI3 = N2 + 3I2.
Азот не реагирует с серой, углеродом, фосфором, кремнием и некоторыми другими неметаллами. При нагревании азот реагирует с магнием и щелочноземельными металлами, при этом возникают солеобразные нитриды общей формулы М3N2, которые разлагаются водой с образованием соответствующих гидроксидов и аммиака, например:
Са3N2 + 6H2O = 3Ca(OH)2 + 2NH3.
Аналогично ведут себя и нитриды щелочных металлов. Взаимодействие азота с переходными металлами приводит к образованию твердых металлоподобных нитридов различного состава. Например, при взаимодействии железа и азота образуются нитриды железа состава Fe2N и Fe4N. При нагревании азота с ацетиленом C2H2 может быть получен цианистый водород HCN. Из сложных неорганических соединений азота наибольшее значение имеют азотная кислота HNO3, ее соли нитраты, а также азотистая кислота HNO2 и ее соли нитриты. Поэтому реакции присоединения одного атома H или молекулы H2 к N2 сильно эндотермичны:
H + N2=N2H (87,8 кДж/моль)
H2 + N2=N2H2 (204,8 кДж/моль)
Отсюда следует, что гидрирование N2 не может происходить через стадию образования диимида (HN=NH), в то время как в случае ацетилена аналогичные реакции сильно экзотермичны:
H + С2H2=C2H3 (- 167,2 кДж/моль)
H2 + С2H2=C2H4 (- 175,5 кДж/моль)
Итак, энергетические характеристики N2 из-за особенностей его электронного строения делают его нереакционноспособным в реакциях с кислотами и основаниями, электрофильными (R+, AlCl3) и нуклеофильными (H-, R-, OR-) реагентами и даже с атомом H.
До 1964 года считали маловероятной возможность создания каталитических систем для фиксации азота, работающих в более мягких условиях, чем катализаторы процесса Габера-Боша, и более простых по структуре, чем ферменты. Вместе с тем известные в то время методы активации инертной молекулы CO комплексами переходных металлов, аналогии с активацией типичной тройной связи в алкинах и известные данные о наличии переходных металлов (Mo, V, Fe) в активных центрах нитрогеназ позволяли надеяться на возможность использования более слабых восстановителей, чем Li, при использовании комплексов переходных металлов в качестве активаторов азота [13].
Разработка дополнительных занятий в школе к теме "Химизм различных способов приготовления пищи"
Проблема пищи всегда
была одной из самых важных проблем, стоящих перед человеческим обществом.
Все, кроме кислорода,
человек получает для своей жизнедеятельности из пищи. Среднее потребле ...
Свойство водных растворов
электролитов.
Цель
работы:
ознакомится с электропроводностью растворов, ионными равновесиями в растворах
электролитов.
Согласно
теории электролитической диссоциации электролиты при растворении в воде
распад ...
Развитие алхимии
...