О структурной "памяти" аморфного полистирола
Учим химию / Учим химию / О структурной "памяти" аморфного полистирола О структурной "памяти" аморфного полистирола
Страница 1

Эксперименты по рассеянию рентгеновского излучения или нейтронов разбавленными растворами «меченых» цепочек в протонированном полимере идентичной природы, а также результаты «машинного» моделирования концентрационной зависимости конформационных характеристик гибкоцепных полимеров в хороших и плохих растворителях в целом согласуются с представлением о том, что независимо от термодинамического качества растворителя макромолекулы сохраняют конформацию гауссового клубка, несмотря на их перекрывание после достижения критической концентрации, и приобретают невозмущенные размеры при переходе в блочное состояние. Иначе говоря, после полного удаления растворителя должна восстанавливаться макроструктура (на уровне клубков) и микроструктура (на уровне сегментов) исходного блочного полимера. С этим выводом, однако, не согласуются результаты исследования спин-спиновой релаксации протонов в расплаве ПЭ [1], судя по которым в образце, полученном из раствора, исходная структура расплава не восстанавливается даже после длительной (более 5 сут) выдержки при 425 К.

Измерения реологических [2, 3] и термодинамических [4] характеристик аморфного ПС показали, что различия абсолютных значений вязкости, энергии активации вязкого течения Е и сжимаемости расплава исходного ПС и образца, полученного из хорошего растворителя, сохраняются после многочасовой выдержки при 463 К. Перечисленные данные указывают на возможность изменения локальной структуры расплава полимера (предположительно за счет изменения структуры сетки зацеплений) путем предварительного растворения в растворителях различного термодинамического качества и последующего их полного удаления из полимера. В данном сообщении сделана попытка оценить влияние описанных способов приготовления образцов на структурно-чувствительные характеристики ПС в широком диапазоне температур, включающем область существования расплава, область перехода из высокоэластического в стеклообразное состояние и область стеклообразного состояния.

Исследовали нефракционированный ПС, полученный полимеризацией в блоке, А=1,93-105 (рассчитывали из соотношения [т|] = 11,3-10~5 Mva-13 для предельного числа вязкости в бензоле при 298 К [5]). В качестве растворителей использовали дважды перегнанные бензол, ж-ксилол, циклогексан и хлористый метилен, о термодинамическом качестве которых можно судить по значениям параметра растворимости б [6] и коэффициента набухания макромолекулярного клубка ПС а [7],.

Образцы для исследований готовили путем растворения исходного ПС в выбранном растворителе (концентрация ПС~1%), медленного упаривания раствора при 298 К в течение нескольких суток и последующего вакуумирования при 413 К в течение нескольких часов. Эмпирическими критериями полного удаления растворителя из полимера служили постоянство массы образца после многочасового вакуумирования, а также совпадение температур стеклования образцов, полученных из раствора, и исходного ПС. Выборочная проверка показала, что описанный способ приготовления образцов практически не сказывается на ММ (значения Mv для образцов, полученных из циклогексана и и-ксилола, равны соответственно 1,88-105 и 1,80-105).

Эффективную вязкость расплава г\ определяли по кривым течения, измеренным при 453-473 К в диапазоне скоростей сдвига 0,16-50 с-1 и напряжений сдвига 3-К)3—2,6-104 Па с помощью капиллярного вискозиметра (использовали капилляр диаметром 1,12 мм и длиной 8,3 мм), погрешность измерений находилась в пределах 6-7%.

Страницы: 1 2 3 4 5

Смотрите также

Физико-химические свойства меди и железа
...

Алкадиены. Каучук
Алкадиены, или диеновые углеводороды, — не­предельные углеводороды, содержащие в углеродной цепи молекулы две двойные связи. ...

Галогены
Галогены (от греч. halos – соль и genes – рождающий, рождённый) находятся в главной подгруппе VII группы периодической системы химических элементов. К галогенам относят фтор, хлор, бром, ...