Для свободного внутреннего вращения в этане (при высокой температуре):
Для каждой из двух свободно вращающихся групп в сложной молекуле:
Число молекулярной вращательной симметрии требует специального анализа. Там же у Ерёмина приводятся приёмы расчёта.
Учитывая все ротационные преобразования симметрии, например, для этана получаем число 18 (3 степени свободы для вращения вокруг оси 3-го порядка вдоль связи C-C, ещё 2 - для оси 2-го порядка и также для внутреннего вращения – вновь ось 3-го порядка).
Вся ротационная сумма состояний в общем случае приобретает вид:
(Ерёмин, стр.233, формула VI.155)
.
Множитель p1/2 появляется при вычислении ротационной статистической суммы методом классической статистики, тогда как вывод общей формулы на основе квантовой статистики невозможен.
Вращательные стат. суммы сложных молекул и ротационное число симметрии.
(см. Приложение – несколько страниц из книги Дж. Майер, М. Гёпперт-Майер).
Термогравиметрия
Метод термического
анализа, основанный на непрерывной регистрации изменения массы (взвешивании)
образца в зависимости от его температуры в условиях программированного
изменения температуры среды. П ...
История алхимии
Алхимия - позднелатинское, донаучное
направление в химии. Происхождение алхимии.
Название восходит
через арабское к греческому Chemeia от cheo лью, отливаю, что указывает на
связь алхи ...