Химическая реакция в смеси идеальных газов. Константа химического равновесия в смеси идеальных газов
Учим химию / Учим химию / Химическая реакция в смеси идеальных газов. Константа химического равновесия в смеси идеальных газов Химическая реакция в смеси идеальных газов. Константа химического равновесия в смеси идеальных газов
Страница 3

Это и есть основание для расчёта константы химического равновесия.

Применяя правило ИЮПАК для стехиометрических коэффициентов, формулу (21.3) легко записать в общем виде

; (5)

Введём стандартные химические потенциалы веществ i.

. (6)

Стандартное сродство реакции принимает вид

; (7)

Сокращая на RT=NkT, получаем

; (8)

Константа химического равновесия в смеси идеальных газов.

Совершим цепочку несложных преобразований. Вначале внесём стехиометрические коэффициенты в сумме под знак логарифма в виде показателей степеней у статистических сумм

; (9)

Затем воспользуемся тем, что сумма логарифмов равна логарифму произведения

; (10)

Наконец, избавляясь от логарифмов, получаем искомое статистическое выражение для константы равновесия

; (11)

Она имеет вид произведения статистических сумм.

Константа химического равновесия в смеси идеальных газов.

; (12)

Стандартные суммы состояний имеют вид:

- трансляционная: ; (13)

- молекулярная: ; (14)

Константа равновесия может рассчитываться как непосредственно в виде произведения статистических сумм,

; (15)

которые предварительно следует рассчитать, а также по результирующей формуле

; (21.14)

При вычислении электронных сумм состояния помним, что занят один-единственный электронный уровень, и он характеризуется кратностью вырождения ge, i. Эта кратность равна числу микросостояний основного терма у атомов и у молекул. У молекул чаще всего достаточно спиновой мультиплетности, но возможно и орбитальное вырождение. Это уже зависит от конкретной частицы.

Поэтому электронная сумма состояний у молекулы определяется формулой

; (16)

Энергия химической связи считается равной энергии её диссоциации и отсчитывается от основного колебательного уровня, а не от минимума потенциальной кривой.

Этот вопрос рассмотрен в учебнике Даниэльса и Олберти на стр.539 в разделе 17.13. Там же приводятся основные формулы. Раздел написан хорошо и достаточно просто. Этот учебник вполне пригоден для подготовки студентов.

1. Сводка статистических сумм для простейших стационарных движений.

ПРИЛОЖЕНИЕ 1. Математическая справка о факториалах больших числах.

Факториал числа, соизмеримого с числом Авогадро, непосредственно вычислить невозможно, и поэтому давно разработаны приближённые способы численно точного вычисления, основанные на применении гамма – функции Эйлера первого рода.

Страницы: 1 2 3 4 5

Смотрите также

Заключение
29Cu – Медь [Ar]3d104s1   Древние цивилизации оставили нам множество изделий из бронзы.      Атомная масса: 63,54      Электроотрицательность: 1,9 Тпл: 10 ...

Органические вещества в водных системах
...

Химия каренов
Одним из наиболее распространенных монотерпеновых углеводородов является 3-карен — 3,7,7-триметилбицикло[4.1.0]гепт-3-ен (1), входящий в состав многих эфирных масел и скипидаров.  мо ...