Общая модель волн материи. Формула Де-Бройля. Частица в "ящике" и частица на "орбите"
Библиотека / Библиотека / Общая модель волн материи. Формула Де-Бройля. Частица в "ящике" и частица на "орбите" Общая модель волн материи. Формула Де-Бройля. Частица в "ящике" и частица на "орбите"
Страница 1

Общая модель волн материи. Формула Де-Бройля. Частица в "ящике" и частица на "орбите"

Самое простое, но очень полезное введение в теорию квантовых эффектов связано с представлениями о волнах материи. Этот подход старый, его очень любил Я.К. Сыркин. Он нагляден. По словам Мелвин - Хьюза "менее всего физико-химика интересует способ получения точной формулы. Ему важно понять, как устроена материя на уровне его интересов химика . ".

Этим и воспользуемся. Ещё не начитаны лекции, а мы уже очень многое сможем обсудить о квантовании важнейших движений, и даже их сравнить…

1. Два взгляда на фотон. Волна света и частица – её носитель

Носители волны света частицы - фотоны.

Это дискретные частицы поля без массы покоя.

Для них справедливы формулы:

Из волновой теории (Максвелл-Хевисайд-Эйнштейн) E=mc2(1.1).

Из квантовой модели света (Планк-Эйнштейн) E= hn, где (1.2).

частота равна n= c/l (1.3).

Сравнивая оба выражения, получаем равенство E = mc2 = hn = hc/l(1.4).

Длина световой волны получается равной l = h / mc= h/pc (1.5).

Величина mc= pc это импульс материального носителя светового поля, фотона – частицы, у которой нет массы покоя.

2. Два взгляда на частицу. Волна материи и механический объект.

Волны Де-Бройля. Импульс и длина волны. Стоячие волны материи.

Суть идеи Де-Бройля в том, что аналогично фотону любое материальное тело характеризуется волновым процессом, а длина такой волны определяется аналогичной же формулой, где скорость фотона - света, заменена механической скоростью V материальной частицы – корпускулы с массой покоя V. В таком случае длина волны материи равна l = h / mV= h/p(2.1).

На замкнутую траекторию движения частицы на линейном интервале должно укладываться целое число стоячих волн. Совсем так же, как и у обычной стоячей волны – у струны, например.

Это легко приводит к двум очень простым и важнейшим моделям движения. Это одно из крупнейших открытий физики начала 20-го века.

С этого началась ядерная и электронная эра.

"…Не следует стесняться истории науки – это один из очень важных аспектов преподавания…" (акад. Я.К. Сыркин и проф.Н.И. Гельперин)

1. Линейное движение на ограниченном интервале–потенциальный ящик. Задача 1. Получить формулу поступательных уровней частицы, движущейся на ограниченном интервале. Использовать формулу Де-Бройля.

Модель движения предельно идеализированная. Тем не менее, она с удивительной общностью описывает ряд фундаментальных эффектов и явлений.

Условия задачи:

В этой простейшей системе частица…

- движется на прямолинейном интервале L между двумя идеально отражающими стенками,…

- претерпевает абсолютно упругие удары о стенки, …

- отражается и движется вспять…

Изменяется направление вектора скорости (импульса), но модуль сохраняется. Это поступательное движение строго периодическое.

Потенциальная энергия внутри “ящика” намного меньше, чем за его пределами, и для простоты принята равной нулю

U(<0x<L) =0(3.1).

Полная энергия частицы содержит только кинетическую составляющую. T=mV2/2=p2/2m (1.1).

Подобно вибрации ограниченной струны, на отрезке пути длиною L может укладываться лишь целое число полуволн де Бройля, и отсюда следует квантование и модуля импульса, и энергии.

Полагая n (l/2) = L "nÎN(1,2,3,…¥), (1.2)

получаем l=2L /n=h/p, (1.3)

а далее p/h = n /2L, (1.4)

откуда p = n h /2L "nÎN(1,2,3,…¥), (1.5)

и кинетическая энергия – она же и полная энергия, поскольку потенциальная равна нулю, естьE=T= p2/2m = n2h2/22L2´2m. (1.6)

Окончательно формула полной энергии предписывает дискретные значения, зависящие от внешнего "чужого" целочисленного параметра - числа nÎN(1,2,3,…),

которое может быть любым в пределах множества N чисел натурального ряда.

Получилась формула квантования энергии в виде дискретных энергетических уровней. Уровни суть просто численные значения полной энергии. Они дискретны - квантованы, и потому нумеруемы:

Страницы: 1 2 3 4

Смотрите также

Жизнь и научные открытия А.Л. Лавуазье и К.Л. Бертолле
Лавуазье и Бертолле – без сомнения, самые выдающиеся ученые-химики своего времени. И по праву считаются основателями современной химии, создателями принятой ныне химической номенклатуры. ...

 Определение константы скорости реакции k по первым 3-м опытам
Из вида кинетического уравнения следует, что его единственным параметром является константа скорости реакции k. Для определения значения константы скорости воспользуемся статистическим методом регр ...

Влияние добавок на устойчивость пероксида водорода в водных растворах
В настоящее время пероксид водорода H2O2 находит широкое применение, особенно в медицине, где его используют в качестве: - антисептика в концентрации 3%; - стерилизующего агента в ко ...