1959 г.
Лауреат Нобелевской премии Ричард Фейнман заявляет, что в будущем, научившись манипулировать отдельными атомами, человечество сможет синтезировать все, что угодно.
1981 г.
Создание Бинигом и Рорером сканирующего туннельного микроскопа - прибора, позволяющего осуществлять воздействие на вещество на атомарном уровне.
1982-85 гг.
Достижение атомарного разрешения.
1986 г.
Создание атомно-силового микроскопа, позволяющего, в отличие от туннельного микроскопа, осуществлять взаимодействие с любыми материалами, а не только с проводящими.
1990 г.
Манипуляции единичными атомами.
1994 г.
Начало применения нанотехнологических методов в промышленности.
Однако принято считать, что нанотехнология "началась" когда 70 лет назад Г. А. Гамов впервые получил решения уравнения Шредингера, описывающие возможность преодоления частицей энергетического барьера даже в случае, когда энергия частицы меньше высоты барьера. Новое явление, называемое туннелированием, позволило объяснить многие экспериментально наблюдавшиеся процессы. Найденное решение позволило понять большой круг явлений и было применено для описания процессов, происходящих при вылете частицы из ядра - основы атомной науки и техники. Многие считают, что за грандиозность результатов его работ, ставших основополагающими для многих наук, Г. А. Гамов должен был быть удостоен нескольких Нобелевских премий.
Развитие электроники подошло к использованию процессов туннелирования лишь почти 30 лет спустя: появились туннельные диоды, открытые японским ученым Л. Есаки, удостоенным за это открытие Нобелевской премии. Еще через 5 лет Ю. С. Тиходеев, руководивший сектором физико-теоретических исследований в московском НИИ "Пульсар", предложил первые расчеты параметров и варианты использования приборов на основе многослойных туннельных структур, позволяющих достичь рекордных по быстродействию результатов. Спустя 20 лет они были успешно реализованы. В настоящее время процессы туннелирования легли в основу технологий, позволяющих оперировать со сверхмалыми величинами порядка нанометров (1нанометр=10-9 м).
До сих пор создание миниатюрных полупроводниковых приборов основывалось, в основном, на технике молекулярно-лучевой эпитаксии (выращивания слоев, параллельных плоскости подложки), позволяющей создавать планарные слои из различных материалов с толщиной вплоть до моноатомной. Однако эти процессы имеют значительные ограничения, не позволяющие создавать наноскопические структуры. К этим ограничениям относится высокая температура процессов эпитаксии - до нескольких сотен градусов, при которой хоть и обеспечивается рост высококачественных пленок, однако не обеспечивается локальность формируемых областей. Кроме того, высокие температуры поверхности подложки стимулируют диффузионные процессы, "размывающие" планарные структуры. Более "холодные" технологии осаждения, типа напыления, из-за одновременности осаждения материала на всю подложку, одновременного роста в разных местах зерен осаждаемого материала и последующего образования дефектов на их границах раздела также не позволяли создавать бездефектные наноструктуры.
Формирование элементов нанометрового размера первоначально планировалось осуществлять методами электронно-лучевой литографии, дополняемой методами ионного травления. Однако высокоэнергетичный электронный луч, рассеиваясь в подложке, вызывает значительные разрушения в материале, расположенном как под, так и в районе области фокусировки, практически перечеркивая возможность создания многослойных схем с нанометровыми размерами элементов. Возникла тупиковая ситуация, решение которой было найдено в 1981 году.
Фосфолипазы, их классификация и свойства
Фосфолипазы (англ. phospholipase) ферменты класса гидролаз,
катализирующие гидролиз фосфоглицеридов.. В зависимости от положения
гидролизуемой связи в фосфолипиде различают 4 основных класса ...
Результаты экспериментов
Таблица 3.4.
Экспериментальные
данные по окислительному карбонилированию фенилацетилена и метилацетилена.
Иссл.
система
Дата
Реагирующая система
...
Ответы к задачам
Тема 1
1. 0,055. 2. 6.10-3
моль/л. 3. I = 0,006; aCa2+
= 6,4.10-3 моль/л; aCl- = а = 1,5.10-2 моль/л. 4. а±
= 8,223.10-2; а = 5,56.10-4.
5.-133,15 кДж/моль. 6. 297 К. 7. 5,5.10-6
Ом-1.м-1. 8. ...