Решёточные и континуальные модели

На основе решёточной модели выполнено множество теоретических построений, в частности связанных с решением классической и, в каком то смысле, основной задачи физикохимии полимеров о влиянии объемных взаимодействий на конформацию и, соответственно, на свойства гибкой полимерной цепи. Под объемными взаимодействиями обычно подразумевают короткодействующие силы отталкивания, которые возникают между удаленными вдоль по цепи звеньями, когда они сближаются в пространстве за счет случайных изгибов макромолекулы [14,15]. В решеточной модели реальную цепь рассматривают как ломаную траекторию, которая проходит через узлы правильной решетки заданного типа: кубической, тетраэдрической и др. Занятые узлы решетки соответствуют полимерным звеньям (мономерам), а соединяющие их отрезки - химическим связям в скелете макромолекулы. Запрет самопересечений траектории (или, иными словами, невозможность одновременного попадания двух и более мономеров в один решеточный узел) моделирует объемные взаимодействия (Рис. 2.3.). В методе МК при смещении случайно выбранного звена оно попадает в уже занятый узел, то такая новая конформация отбрасывается и уже не учитывается в вычислении интересующих параметров системы. Различные расположения цепи на решетке соответствуют конформациям полимерной цепи. По ним и проводится усреднение требуемых характеристик, например расстояния между концами цепи R.

Исследование такой модели позволяет понять, как объемные взаимодействия влияют на зависимость среднеквадратичной величины <R2> от числа звеньев в цепи N. Конечно величина <R2>, определяющая средние размеры полимерного клубка, играет основную роль в разных теоретических построениях и может быть измерена на опыте; однако до сих пор не существует точной аналитической формулы для расчета зависимости <R2> от N при наличии объемных взаимодействий. Можно также ввести дополнительно энергию притяжения между теми парами звеньев, которые попали в соседствующие узлы решетки. Варьируя эту энергию в компьютерном эксперименте, удается, в частности, исследовать интересное явление, называемое переходом "клубок — глобула", когда за счет сил внутримолекулярного притяжения развернутый полимерный клубок сжимается и превращается в компактную структуру - глобулу, напоминающую жидкую микроскопическую каплю. Понимание деталей такого перехода важно для развития наиболее общих представлений о ходе биологической эволюции, приведшей к возникновению глобулярных белков [16].

Существуют различные модификации решеточных моделей, например, такие, в которых длины связей между звеньями не имеют фиксированных значений, но способны меняться в определенном интервале, гарантирующем лишь запрет самопересечений цепи именно так устроена широко распространенная модель с "флуктуирующими связями". Однако все решеточные модели объединяет то, что они являются дискретными, то есть число возможных конформаций такой системы всегда конечно (хотя и может составлять астрономическую величину даже при сравнительно небольшом количестве звеньев в цепи). Все дискретные модели обладают очень высокой вычислительной эффективностью, но, как правило, могут исследоваться только методом Монте-Карло.

Рис. 2.3. Решеточная модель полимерной цепи.[8]

Для ряда случаев используются континуальные обобщенные модели полимеров, которые способны менять конформацию непрерывным образом. Простейший пример - цепь, составленная из заданного числа N твердых шаров, последовательно соединенных жесткими или упругими связями. Такие системы могут исследоваться как методом Монте-Карло, так и методом молекулярной динамики.

Смотрите также

Выводы
В результате проведенных исследований можно сделать следующие выводы: 1. Проведен анализ различных литературных данных по проблеме анализа микрограммовых количеств тяжелых металлов методом инвер ...

Введение
Процессы ректификации являются одними из самых энергоемких процессов химической технологии, и их эффективность часто определяет экономику производства в целом. В ряде случаев на разделение методом р ...

Молибден
...