Дисперсионный анализ.
Страница 9

114. Структурообразование в дисперсных системах. Физико-хи­мическая механика твердых тел и дисперсных структур. Как ука­зывалось в § 105, дисперсные системы разделяют на две большие группы: свободнодисперсные, или неструктурированные, и связно-дисперсные, или структурированные системы. Последние обра­зуются в результате возникновения контактов между дисперсными частицами. Особенности этих контактов зависят от природы, вели­чины, формы, концентрации дисперсных частиц, а также от их распределения по размерам и взаимодействия с дисперсионной средой.

На рис. 104 схематично показаны виды возможных контактов между частицами в структурированных дисперсных системах. Вы­деляют два, резко различающихся по своим свойствам, типа про­странственных структур, названных П. А. Ребиндером коагуля-ционными и конденсационными структурами. Основное различие этих структур состоит в неодинаковой природе контакта между частицами дисперсной фазы. В коагуляционных структурах этот контакт осуществляется или через очень тонкие прослойки дисперсионной среды (рис. 104, а) и точечные контакты (рис. 104, в), или при участии макромолекул (рис. 104,6). Конденсационные структуры возникают как результат склеивания, сваривания, сра­стания частиц дисперсной фазы на отдельных участках поверхно­сти (рис. 104, г).

Рис. 104. Виды контактов в пространственных дисперсных структурах:

в, б — коагуляцпонные с низкомолекулярными сольватными (с) и высокомолекулярными (б) слоями; в — точечные; г — фазовые контакты.

Коагуляционные пространственные структуры образуются из свободнодисперсных систем, когда дисперсионное притяжение между частицами преобладает над электростатическим отталки­ванием. В этом случае энергия результирующего взаимного при­тяжения частиц сравнима с энергией их теплового броуновского движения.

На первых этапах коагуляцпонного взаимодействия возникают агрегаты из двух, трех, а иногда и цепочки первичных дисперсных частиц; коллоидный раствор сохраняет текучесть, так как разви­тие структуры не дошло до образования непрерывной сетки. Воз­никает жидкообразная коагуляциопная структура (соответствующая стадии скрытой коагуляции, см. § 113). В по­токе жидкости агрегаты распадаются и вновь образуются; каждой скорости потока соответствует своя равновесная величина агрега­тов, а следовательно, и оказываемого ими сопротивления потоку жидкости. Поэтому возникновение пространственных структур в растворах обнаруживается по изменению вязкости в зависимо­сти от скорости потока жидкости *.

Дальнейший рост агрегатов приводит к образованию коагулята (седимента) или геля (рис. 89 на стр. 300). Возникает твердооб-разная пространственная коагуляционная структура, которая мо­жет быть плотной или рыхлой.

Плотная структура (рис. 89,6) возникает, когда частицы дис­персной фазы укладываются в осадке наиболее плотно, «скользя» друг относительно друга; если первичные частицы соединяются в цепочки, то коагуляционпая структура будет рыхлой—«ароч­ной» (рис. 89, в). Образованию геля (рис. 89, и) особенно благо­приятствует вытянутая форма частиц дисперсной фазы, но при больших концентрациях гелеобразование возможно и в случае сфе­рических частиц, если они склонны к цепочкообразованию.

Свежеполученные коагуляты во многих случаях способны вновь переходить в состояние золя. Такой изотермический переход коагулят --> золь называют пептизацией, а вызывающие его вещества—пептизаторами. Пептизаторы являются стабили­заторами дисперсных систем и могут быть веществами как ионной Тэлектролиты), так и молекулярной природы. Адсорбируясь на поверхности первичных частиц, пептизаторы ослабляют взаимо­действие между ними, что приводит к распаду агрегатов и пере­ходу коагулята в состояние золя. Пептизацию часто наблюдают при промывании дистиллированной водой находящихся на фильтре свежеполученных осадков гидроксидов и сульфидов металлов. Промывание дистиллированной водой уменьшает концентрацию электролитов, что приводит к изменению структуры двойного электрического слоя — часть противоионов переходит из адсорб­ционного в диффузный слой, возрастает электрокинетический по­тенциал частиц коагулята. В результате осадок гидроксида или Сульфида на фильтре уменьшается — пептизируется, проходя через поры фильтра в виде золя.

Страницы: 4 5 6 7 8 9 10 11 12

Смотрите также

Реакции фенолов
Фенолы могут реагировать как по гидроксильной группе, так и по бензольному кольцу. ...

Введение.
Важнейшим свойством ряда белков является их каталитическая активность. Вещества белковой природы, способные каталитически ускорять химические реакции, называют ферментами. Роль ферментов в жизнедея ...

Жизнь и научные открытия А.Л. Лавуазье и К.Л. Бертолле
Лавуазье и Бертолле – без сомнения, самые выдающиеся ученые-химики своего времени. И по праву считаются основателями современной химии, создателями принятой ныне химической номенклатуры. ...