Дисперсионный анализ.
Страница 9

114. Структурообразование в дисперсных системах. Физико-хи­мическая механика твердых тел и дисперсных структур. Как ука­зывалось в § 105, дисперсные системы разделяют на две большие группы: свободнодисперсные, или неструктурированные, и связно-дисперсные, или структурированные системы. Последние обра­зуются в результате возникновения контактов между дисперсными частицами. Особенности этих контактов зависят от природы, вели­чины, формы, концентрации дисперсных частиц, а также от их распределения по размерам и взаимодействия с дисперсионной средой.

На рис. 104 схематично показаны виды возможных контактов между частицами в структурированных дисперсных системах. Вы­деляют два, резко различающихся по своим свойствам, типа про­странственных структур, названных П. А. Ребиндером коагуля-ционными и конденсационными структурами. Основное различие этих структур состоит в неодинаковой природе контакта между частицами дисперсной фазы. В коагуляционных структурах этот контакт осуществляется или через очень тонкие прослойки дисперсионной среды (рис. 104, а) и точечные контакты (рис. 104, в), или при участии макромолекул (рис. 104,6). Конденсационные структуры возникают как результат склеивания, сваривания, сра­стания частиц дисперсной фазы на отдельных участках поверхно­сти (рис. 104, г).

Рис. 104. Виды контактов в пространственных дисперсных структурах:

в, б — коагуляцпонные с низкомолекулярными сольватными (с) и высокомолекулярными (б) слоями; в — точечные; г — фазовые контакты.

Коагуляционные пространственные структуры образуются из свободнодисперсных систем, когда дисперсионное притяжение между частицами преобладает над электростатическим отталки­ванием. В этом случае энергия результирующего взаимного при­тяжения частиц сравнима с энергией их теплового броуновского движения.

На первых этапах коагуляцпонного взаимодействия возникают агрегаты из двух, трех, а иногда и цепочки первичных дисперсных частиц; коллоидный раствор сохраняет текучесть, так как разви­тие структуры не дошло до образования непрерывной сетки. Воз­никает жидкообразная коагуляциопная структура (соответствующая стадии скрытой коагуляции, см. § 113). В по­токе жидкости агрегаты распадаются и вновь образуются; каждой скорости потока соответствует своя равновесная величина агрега­тов, а следовательно, и оказываемого ими сопротивления потоку жидкости. Поэтому возникновение пространственных структур в растворах обнаруживается по изменению вязкости в зависимо­сти от скорости потока жидкости *.

Дальнейший рост агрегатов приводит к образованию коагулята (седимента) или геля (рис. 89 на стр. 300). Возникает твердооб-разная пространственная коагуляционная структура, которая мо­жет быть плотной или рыхлой.

Плотная структура (рис. 89,6) возникает, когда частицы дис­персной фазы укладываются в осадке наиболее плотно, «скользя» друг относительно друга; если первичные частицы соединяются в цепочки, то коагуляционпая структура будет рыхлой—«ароч­ной» (рис. 89, в). Образованию геля (рис. 89, и) особенно благо­приятствует вытянутая форма частиц дисперсной фазы, но при больших концентрациях гелеобразование возможно и в случае сфе­рических частиц, если они склонны к цепочкообразованию.

Свежеполученные коагуляты во многих случаях способны вновь переходить в состояние золя. Такой изотермический переход коагулят --> золь называют пептизацией, а вызывающие его вещества—пептизаторами. Пептизаторы являются стабили­заторами дисперсных систем и могут быть веществами как ионной Тэлектролиты), так и молекулярной природы. Адсорбируясь на поверхности первичных частиц, пептизаторы ослабляют взаимо­действие между ними, что приводит к распаду агрегатов и пере­ходу коагулята в состояние золя. Пептизацию часто наблюдают при промывании дистиллированной водой находящихся на фильтре свежеполученных осадков гидроксидов и сульфидов металлов. Промывание дистиллированной водой уменьшает концентрацию электролитов, что приводит к изменению структуры двойного электрического слоя — часть противоионов переходит из адсорб­ционного в диффузный слой, возрастает электрокинетический по­тенциал частиц коагулята. В результате осадок гидроксида или Сульфида на фильтре уменьшается — пептизируется, проходя через поры фильтра в виде золя.

Страницы: 4 5 6 7 8 9 10 11 12

Смотрите также

C, N, O-ацилирование
Ацилирование - введение ацильной группы (ацила) RCO в молекулу органического соединения путем замещения атома водорода. В широком смысле ацилирование это замещение любого атома или группы атомов на ...

Обзор источников образования тяжелых металлов
Тяжелые металлы применяются во многих отраслях промышленности, таких как металлургия, химическая технология, электрохимия, резиновая, текстильная, фарфоровая и другие. В производственных пр ...

Разложение клетчатки микроорганизмами
Еще в древности при построении деревянных судов для защиты дерева использовали асфальт. Во времена Римской империи суда обивали металлическими листами. Выбор материалов производился экспери ...