Дисперсионный анализ.
Страница 1

Оптические и молекулярно-кинети-ческие свойства дисперсных систем. Дисперсионный анализ со­стоит в определении размеров частиц и удельной поверхности дисперсной фазы, а в случае полидисперсных систем также в установлении распределения диспергированного вещества по фрак­циям различного размера.

Простейшим методом дисперсионного анализа является сито­вой анализ, состоящий в рассеве исследуемого образца через сита с определенными размерами отверстий. Определив массу каждой из фракций, находят распределение исследуемого образца по фракциям разного размера. Ситовой анализ позволяет анализиро­вать порошки до 60 мкм в поперечнике. Методы дисперсионного анализа более высокодисперсных систем основываются на их опти­ческих и молекулярно-кинетичсских свойствах.

Взаимодействие света с веществом зависит от соотношения длины волны света и размеров частиц, на которые падает световой ноток. Это взаимодействие происходит по законам геометрической оптики (отражение, преломление), если размеры объекта больше

рис. 92. Схема поточного ультра­микроскопа Б. В. Дерягина в Г. Я. Власенко:

I — кювета: 2 — источник света;

S— линза; 4—тубус микроскопа.

длины волны света. Если размеры частиц меньше-половины длины волны света, то происходит рас­сеивание света в результате его дифракции. Область види­мого света характеризуется длиной волн от 760 до 400 нм. Поэтому в молекулярных и коллоидных системах видимый свет рассеивается, а в проходящем свете эти растворы прозрачны. Наибольшей интенсивности рассеивание света до­стигает в коллоидных системах, для которых светорассеяние является характерной качественной особенностью. Обнаружение в растворе пути луча источника света при рассматривании рас­твора перпендикулярно к направлению этого луча позволяет от­личить коллоидный раствор от истинного. На этом же принципе основано устройство ультрамикроскопа, в котором наблюдения проводят, в отличие от обычного микроскопа, перпендикулярно направлению проходящего через объект света. Схема поточного ультрамикроскопа Б. В. Дерягина и Г. Я. Власенко приведена на рис. 92. С помощью этого прибора определяют концентрацию дис­персных частиц в аэрозолях и коллоидных растворах.

Форму коллоидных частиц, вирусов, многих макромолекул, включая молекулы более крупных белков, впервые оказалось возможным увидеть на флуоресцирую­щем экране и сфотографировать с помощью электронного микроскопа, изобретен­ного в конце 30-х годов XX века. Длина волны потока электронов при доста­точной ускоряющей разности потенциалов имеет порядок Ю-10 м, что меньше размеров коллоидных частиц. Поэтому взаимодействие потока электронов с кол­лоидными частицами происходит по законам геометрической оптики *.

На рис. 93 показаны пределы применимости оптических мето­дов исследования дисперсных систем. Коллоидные частицы прохо­дят через бумажные фильтры, но задерживаются ультрафиль­тр а м и (мембранными фильтрами), представляющими собой гели полимеров в виде пленок. Зная радиус пор ультрафильтров, можно оценить размер коллоидных частиц.

Молекулярно-кинетическими называют те свойства, которые связаны с хаотическим тепловым движением частиц, образующих те или иные системы. Различия в молекулярно-кине-тическом поведении молекулярно-, коллоидно-, и микроскопически-дисперсных систем зависят от размеров частиц, образующих эти системы, и носят количественный характер.

К молекулярно-кинетическим свойствам дисперсных систем от­носятся броуновское движение, диффузия и седиментация.

Броуновским движением называется беспорядочное, хаотичное—подобное рою комаров, пляшущих в солнечном лу­че,—движение коллоидно- и микроскопически-дисперсных частиц. Это явление получило название по имени английского ботаника Р. Броуна, впервые в 1827 г. обнаружившего под микроскопом непрерывные колебательные движения пыльцы растений в ее взвеси в воде.

Страницы: 1 2 3 4 5 6