Важнейшие характеристики диэлектриков
Страница 1

Основными характеристиками диэлектрических материалов являются [14]:

1. Диэлектрическая проницаемость

() – безразмерная величина, характеризующая свойства изолирующей (диэлектрической) среды и показывающая, во сколько раз емкость конденсатора в данной среде превышает емкость того же конденсатора в вакууме e = С/Сo.

Емкость конденсатора в вакууме составляет Co = eoS/d, диэлектрическая проницаемость вакуума в международной системе физических величин (СИ) является размерной величиной eo = = 8,854.10-12 Ф/м.

Диэлектрическая проницаемость связана с поляризуемостью диэлектрика (a), определяющей возможность переориентации его структурных элементов во внешнем электрическом поле и характеризующаяся коэффициентом, связывающим дипольный момент (р) и локальное электрическое поле (Е)

p = aЕ,

(1)

причем a = ae + ai + ad + as, где ae - смещение электронного облака, ai - ионов, ad - диполей, as - объемного заряда.

Электронная поляризуемость ae возникает в результате смещения электронных орбиталей атомов относительно ядер и присуща всем твердым телам. У некоторых твердых веществ, например алмаза, e - единственная составляющая поляризуемости; ai - связана с относительным смещением или разделением катионов и анионов в твердом теле (определяет поляризацию в ионных кристаллах); ad - возникает в веществах, имеющих постоянные электрические диполи (H2O, HCl), которые могут удлиняться или менять ориентацию под действием поля.

Соотношение между ионной и электронной поляризацией характеризует меру упорядоченности электронов относительно ионов кристаллической решетки:

(2)

По вкладу в величину поляризации и диэлектрическую проницаемость as> ad> ai>ae. Эти составляющие поляризуемости находят из емкостных, микроволновых и оптических измерений в широком интервале частот (f) (рисунок 1).

Поляризуемость и диэлектрическая проницаемость диэлектриков сильно зависят от частоты прилагаемого электрического поля f.

При f <103 Гц все составляющие  дают вклад в величину p. При f>106 объемный заряд не успевает образоваться у большинства ионных кристаллов. При f>109 (микроволновая область) - нет поляризации диполей. Область f >1012 (оптическая), где единственная составляющей поляризации является ae. В оптической области n2 = e'¥ (показатель преломления в видимой области спектра).

Общий вид зависимости диэлектрической проницаемости от частоты приведен на рисунке 1.

Рисунок 1 - Зависимость диэлектрической проницаемости от частоты

В области между и диэлектрическую проницаемость представляют в виде комплексной величины e* = e' - je", где e` - вещественная составляющая, а

где w = 2pf (угловая частота), t - время релаксации (сейчас для описания сложных процессов поляризации в диэлектриках вводится понятие "распределение времен релаксации").

2. Тангенс угла диэлектрических потерь (

tgδ

)

– безразмерная величина, характеризующая рассеяние электрической энергии в конденсаторе, связанное с переходом этой энергии в тепловую (нагревом конденсатора) и рассеянием в окружающей среде. δ – угол потерь, дополняющий до 90угол сдвига между током и напряжением в цепи конденсатора и отличный от нуля в силу наличия у реального диэлектрика конечного, а у обкладок – отличного от нуля сопротивления постоянному току и запаздывания поляризации диэлектрика по отношению к изменению внешнего поля. Значения tgδ при заданных внешних условиях зависит от свойств диэлектрика (на не слишком высоких частотах) и материала обкладок. Определяющими величину tgδ процессами в диэлектрике являются его электропроводность и релаксационная поляризация.

Страницы: 1 2

Смотрите также

Использование озона
Озон - высокоэффективное и универсальное окисляющее вещество, которое используется в обработке воды в целях дезинфекции, удаления марганца и железа, улучшения вкуса, устранения цвета и запа ...

Замораживание как один из способов очистки питьевой воды от примесей
Вода, как природный ресурс, является объектом государственной собственности во всех странах мира, в которых первоочередное внимание уделяется вопросам управления, планирования и экономики в ...

Методики анализа витаминов
...