Перспективы промышленного производства полимеров
Страница 2

Важным результатом исследования является возможность получать материалы с заданными свойствами – регулировать можно не только механические, но и электрические, и термические свойства». Ученые из National Institute of Standards and Technology (NIST) создали совершенно необычный полимер из нанотрубок длинной до 1 см. Трубки позволяют материалу быть не только чрезвычайно прочным, но и неограниченное время поддерживать форму. Кроме материала для чего-либо, данный полимер может применяться как средство передачи малых объемов химикатов (через трубки), т.е. работать как микроскопические шприцы, вводящие молекулы в зону химической реакции по 1 шт. До этого времени самыми «удачными» свойствами обладали нанотрубки из углерода. Стабильные и не хрупкие трубки из другого материала были получены впервые.

Ученые из Боннского и Левенского университетов обнаружили, что могут влиять на газо- и водопроницаемость пластмасс, добавляя в них наноразмерные пластинки. Если такие пластики использовать для пищевой упаковки, то они могли бы помочь в сохранении фруктов, овощей и других скоропортящихся продуктов, увеличивая допустимое время нахождения на прилавке и снижая стоимость перевозки, включая доставку от производителя до хранилища.

Упаковка из нанополимера, содержащего частицы оксида цинка, не восприимчива к УФ-излучению и продлевает срок хранения пищевых продуктов. Разработка представлена компанией Micronisers. Специальный материал с оксидом цинка Nanocryl обеспечивает наилучшую и наиболее длительную защиту от воздействия солнечного света и высоких температур. Компания также заверяет, что новый ПЭНД пленки на основе нового полимера не так быстро разлагаются в почве как традиционные пластиковые материалы, и может успешно применяться в сельском хозяйстве – как укрывная пленка для растений. Освоена методика организации протяженных структур из нанотрубок и наностержней на разнообразных поверхностях со строго определенной, контролируемой и стабильно выдерживаемой по поверхности плотностью с использованием полимерных пузырей. Ученым из Гарвардского и Гавайского университетов удалось продемонстрировать возможность использования метода экструзии посредством надувания пузырей для создания протяженных слоев из ориентированных в пространстве заданным образом нанотрубок. Аналогичные технологии были известны и использовались в промышленности и раньше, например, при производстве пластиковых пленок, однако для организации массивов из нанотрубок технология «мыльных пузырей» была применена впервые. В ходе проведенных экспериментов наноструктуры растворялись в жидкости на основе полимера, из которой выдувался пузырь. Малая толщина стенок пузыря (несколько сот нанометров) способствовала равномерному и упорядоченному расположению нанотрубок в стенках пузыря. По мере контролируемого роста пузырь соприкасался с экспериментальной подложкой - например, кремниевой пластиной. При этом стенка пузыря с содержащимися в ней наноструктурами «прилипала» к пластине, образуя сверхтонкую пленку со строго определенной и контролируемой удельной плотностью наноструктур. Предполагается, что новая технология позволит удешевить, в частности, массивы биологических сенсоров и экраны на основе наноструктур». Полимерная резиновая смесь молекулярного уровня, рожденная нанотехнологиями, обеспечивает взаимодействие шины даже с самыми мельчайшими выступами дорожной поверхности, идущее на молекулярном уровне. Можно сказать, новая шина прямо-таки берет дорогу в свои объятия. Новая резиновая смесь также отличается выдающимися параметрами износостойкости. Объединение этих противоречивых параметров – отличное сцепление и низкий износ – относится к заслугам разработчиков шин. И все это за счет нанотехнологий.

Помимо создания материалов с улучшенными характеристиками, симбиоз нанотехнологий и полимеров позволяет получать полезные эффекты, ранее не виданные. Созданная американскими исследователям химического факультета Калифорнийского университета в Риверсайде жидкость, изменяющая свой цвет под воздействием магнитного поля, содержит крошечные частицы оксида железа диаметром примерно 100 нанометров с нанесенным на них полимерным покрытием. Пластик несет на себе электрический заряд, а оксид железа подвержен действию магнитных полей. В результате манипуляций этими двумя противостоящими силами из частиц можно создавать упорядоченные структуры, носящие наименование коллоидных «фотонных кристаллов». Аккуратно выстроенная решетка обладает способностью не пропускать свет с длиной волны, сравнимой с периодом структуры фотонного кристалла – таким образом можно менять цвет изображения на «жидких экранах». Подобная взвесь частиц чрезвычайно дешева и проста в изготовлении и помимо гигантских мониторов, не «слепнущих» под прямыми лучами солнца, с успехом может быть использована при создании гибкой перезаписываемой «электронной бумаги». Учеными создан первый в мире нейроинтерфейс, связывающий нейроны с пленками, содержащими фотоэлементы. Как считают исследователи, это открытие позволит в будущем сконструировать искусственную сетчатку глаза. Профессору Николасу Котову из медицинского отделения Техасского университета и его коллегам из университета Мичигана удалось связать нервные клетки с воздействием фотонов на специальную фотосенсорную пленку, связанную с клетками. Это открытие не обошлось без использования нанотехнологий. Наночастицы, использованные в составе световоспринимающей пленки, помогли создать современный прототип будущей искусственной сетчатки. Основа искусственной сетчатки – тонкая пленка, созданная послойно. Она представляет собой «бутерброд» из двух слоев: слоя наночастиц теллурида ртути и положительно заряженного слоя полимера PDDA. Оба слоя ученые соединили с помощью специального клея и нанесли на поверхность «бутерброда» биосовместимое аминокислотное покрытие, чтобы нервные клетки могли без проблем взаимодействовать с пленкой. На пленке ученые разместили культуру нейронов. Как только фотоны начали попадать на ее поверхность, в пленке наночастицы абсорбировали фотоны, производя при этом электроны, проходящие через слой полимера PDDA, вырабатывающего слабый электрический ток. Когда ток доходил до клеточной мембраны нейронов, происходил процесс ее деполяризации, и начиналось распространение нервного сигнала, свидетельствующее о наличие в этой области пленки света. Искусственная сетчатка, созданная на базе открытия ученых, сможет даже воспроизводить цветовую насыщенность объектов, не говоря уже о высоком разрешении. Также сетчатка биологически совместима с тканями человека, благодаря использованию полимеров.

Страницы: 1 2 3 4

Смотрите также

Окись этилена
Окись этилена является одним из наиболее крупнотоннажных продуктов органического синтеза, получаемых на основе этилена. Производные окиси этилена (гликоли и их эфиры, этаноламины, поверхнос ...

Химические элементы - токсиканты атмосферы и воды
     Развитие промышленности неразрывно связано с расширением круга используемых химических веществ. Увеличение объемов применяемых пестицидов, удобрений и других химикатов - характерная ...

Модификация неорганических мембран нанокристаллитами пироуглерода
В настоящее время мембранное разделение жидких и газообразных смесей достаточно широко используется в различных отраслях промышленности. Наряду с очевидными достоинствами этого метода разде ...