Развитие современных методов реабилитации стоматологических пациентов с нарушением функции жевания при утрате зубов в значительной степени зависит от возможностей восстановления костной ткани. Применение прогрессивных технологий восстановления функций зубочелюстного аппарата при утрате естественных опор возможно только при выполнении высококачественных методик восполнения костной ткани. Одной из существенных проблем в дентальной имплантологии и в пародонтологии является уменьшение объема костной ткани, которое неминуемо сопровождает утрату естественных зубов в полости рта. Для полноценной стоматологической реабилитации с использованием зубных имплантатов многим пациентам необходимо восстанавливать утраченную кость. И, несмотря на то что в клинической практике применяется большое количество различных костно-пластических материалов, их несовершенство и недостатки ведут к постоянному поиску новых материалов и методик по их применению. Основными причинами, по которым имеются ограничения в использовании современных костно-пластических материалов, явились сложность их применения, низкий процент успеха и их высокая стоимость. "Золотой стандарт" при воссоздании требуемого объема кости — это применение аутотрансплантатов. Методики забора аутотрансплантата не всегда приемлемы при амбулаторном приеме, достаточно сложны и травматичны. Пациенты негативно относятся к данным методикам, что создает дополнительные сложности для проведения качественного лечения. По этим причинам в настоящее время разработка костно-пластических материалов идет в направлении получения искусственных материалов, а также улучшения их свойств и методик применения.
Основное сырье для производства большинства полимеров (ПМ) и материалов на их основе — нефтехимические продукты, получаемые из сырой нефти и природного газа. Производство полимеров из ископаемых горючих материалов растёт быстрее, чем производство других групп потребляемых материалов и в настоящее время достигло 230 млн.т. Через 10 лет их производство должно составить 250 млн т. В 2010 г. потребление ПМ на душу населения увеличится в мире с 28 до 44 кг.
Высокие темпы роста потребления при ограниченных мировых запасах ископаемого сырья определили в конце прошлого века актуальность исследований по использованию возобновляемого сырья для создания полимерных материалов, а именно, биоразлагаемых материалов (БРМ). Следует подчеркнуть, что термин биоразлагаемые материалы в данном случае определяет не столько способ их утилизации, сколько способ получения, а именно, получение из возобновляемого сырья в процессе органического или микробиологического синтеза.
Среди применяемых и активно разрабатываемых в настоящее время БРМ материалы на основе полисахаридов (крахмал и производные целлюлозы), полимеров молочной и гликолевой кислот (полилактиды и по-лигликолактиды), полиамидов, полиэфируретана, полиэтилентерефталата (ПЭТФ), полимеры оксипроизводных жирных кислот — полиэфиры природного происхождения, так называемые полигидроксиалканоаты (ПГА).
Бактериальные ПГА являются представителями нового класса полимеров. По своим основным показателям они близки к синтетическим термопластам (полипропилену, полиэтилену), но обладают уникальными свойствами: высокой биосовместимостью (терморезистентностью) с органами и тканями организма и способностью к биодеградации с образованием нетоксичных продуктов. ПГА, являясь термопластичными материалами, могут перерабатываться экструзионным способом и способом сухого и мокрого формования. ПГА термостабильны, устойчивы к воздействию кислот и ультрафиолетовых лучей. Важное преимущество применения ПГА — возможность стерилизации изделий из них с помощью гамма-излучения.
Ацетаты и ацетатные комплексы d-элементов 6 и 7 групп
Рассматриваемые
соединения – ацетаты и ацетатные комплексы элементов шестой и седьмой побочных
подгрупп. К комплексным соединениям относятся кластеры Cr+2, Mo+2,
Re+3, Tc+3. Данные элементы ...
Реакции углеводов
В живой природе широко распространены
вещества, многим из которых соответствует формула Сх(Н2О)у.
Они представляют собой, таким образом, как бы гидраты углерода, что и
обусловило их названи ...
Гомогенное химическое равновесие
1. Рассчитайте
сродство (-ΔrGt) железа к
кислороду воздуха, Po2=2,0266*104Па при 1000К, если
константа равновесия реакции 2Fe+ O2 2FeO при
этой температуре равна 2,450*1020 Па-1 ...