Эти методы основаны на измерении оптических свойств веществ и излучений, взаимодействия электромагнитного излучения с атомами или молекулами анализируемого вещества, вызывающего излучение, поглощение или отражение лучей. Они включают в себя эмиссионные, люминесцентные и абсорбционные спектральные методы.
Методы, основанные на изучении спектров излучения получили название эмиссионных спектральных методов анализа. В методе эмиссионной спектроскопии проба вещества нагревается до очень высоких температур (2000 - 15000°С). Вещество, испаряясь, диссоциирует на атомы или ионы, которые дают излучение. Проходя через спектрограф, излучение разлагается на компоненты в виде спектра цветных линий. Сравнение этого спектра со справочными данными о спектрах элементов позволяет определить вид элемента, а по интенсивности спектральных линий — количество вещества. Метод дает возможности определять микро- и ультрамикро-количества вещества, анализировать несколько элементов, причем за короткое время.
Разновидностью эмиссионного анализа является эмиссионная пламенная фотометрия, в которой исследуемый раствор вводят в бесцветное пламя горелки. По изменению цвета пламени судят о виде вещества, а по интенсивности окрашивания пламени - о концентрации вещества. Анализ выполняют с помощью прибора - пламенного фотометра. Метод в основном используется для анализа щелочных, щелочноземельных металлов и магния.
Методы, основанные на свечении анализируемого вещества под воздействием ультрафиолетовых (фотолюминесценция), рентгеновских (рентгенолюминесценция) и радиоактивных (радиолюминесценция) лучей называются люминесцентными. Некоторые вещества обладают люминесцентными свойствами, другие вещества могут люминесцировать после обработки специальными реактивами. Люминесцентный метод анализа характеризуется очень высокой чувствительностью (до 10-10 – 10-13 г люминесцирующих примесей). Методы, основанные на изучении спектров поглощения лучей анализируемыми веществами, получили название абсорбционно-спектральных. При прохождении света через раствор свет или его компоненты поглощаются или отражаются. По величине поглощения или отражения лучей судят о природе и концентрации вещества.
В соответствие с законом Бугера-Ламберта-Бера зависимость изменения интенсивности потока света, прошедшего через раствор, от концентрации окрашенного вещества в растворе с, выражается уравнением
Ig (Io/I) = elC,
где Io и I - интенсивность потока света, падающего на раствор и прошедшего через раствор; e - коэффициент поглощения света, зависящий от природы растворенного вещества (молярный коэффициент поглощения); l - толщина слоя светопоглощающего раствора. Измерив изменение интенсивности потока света, можно определить концентрацию анализируемого вещества. Определение ведут с помощью спектрофотометров и фотоколориметров. В спектрофотометрах используют монохроматическое излучение, в фотоколориметрах - видимый свет. Сравнивают полученные при измерении данные с градуированными графиками, построенными на стандартных растворах. Если измеряют поглощение лучей атомами определяемого компонента, которые получают распылением раствора анализируемого вещества в пламени горелки, то метод называют атомно-абсорбционным (атомно-абсорбционная спектроскопия). Метод позволяет анализировать вещества в очень малых количествах.
Оптический метод, основанный на отражении света твердыми частицами, взвешенными в растворе, называется нефелометрическим. Анализ проводится с помощью приборов нефелометров.
Таким образом, использование законов электрохимии, сорбции, эмиссии, поглощения или отражения излучения и взаимодействия частиц с магнитными полями, позволило создать большое число инструментальных методов анализа, характеризуемых высокой чувствительностью, быстротой и надежностью определения, возможностью анализа многокомпонентных систем.
Получение и изучение сульфатов микрокристаллической целлюлозы древесины осины
Сложные эфиры
целлюлозы имеют широкое применение для производства, этим объяснятся большое
количество работ посвященных всестороннему изучению эфиров целлюлозы.
Сернокислые эфиры
(сульфа ...
Расчетная часть
Разделяемая
смесь: бензол–толуол (ХF=0.40). Нагрузка колонны по сырью – 10 т/час. Содержание
низкокипящего компонента в дистилляте (ХD=0.97), в кубовом остатке (ХW=0.029). Контактный элемент –
таре ...