Композиционные материалы
Страница 1

Применение ГА керамики в качестве материала для имплантатов, несущих механические нагрузки, часто невозможно из-за недостаточности прочностных характеристик и трещиностойкости. Поскольку естественная костная ткань является композиционным материалом, состоящим из ГА, коллагена и других белков, то значительные перспективы для повышения механических свойств ГА-керамики, предназначенной для изготовления костных имплантатов, имеет принцип формирования композиционных структур. Введением соответствующих добавок в керамику можно улучшить механические характеристики, но при этом должны сохраняться ее биологические свойства и, в первую очередь, биосовместимость с тканью живого организма.

Композиционные материалы содержащие ГА могут быть подразделены на две основные группы [181]:

· Керамика, армированная дисперсными частицами, дискретными и непрерывными волокнами [251-254];

· Наполненные дисперсными частицами керамики биосовместимые полимеры [255-263].

Для упрочнения оксидных керамик в них вводят дисперсные частицы частично стабилизированного диоксида циркония (ZrO2 (Y2O3)), претерпевающего полиморфное превращение из тетрагональной в моноклинную модификацию под действием механических напряжений. В работах [251,252] изучали взаимодействие ГА с ZrO2 и определяли прочность на изгиб и тещиностойкость при различном соотношении ГА и ZrO2 (Y2O3). Было установлено, что прочность на изгиб и трещиностойкость возрастают с увеличением количества ZrO2. Материалы, содержащие 50 % ZrO2 и обожженные при 1400 0С, показали значения прочности на изгиб, в два-три раза превышающие прочность ГА без добавок. Однако использование диоксида циркония для упрочнения ГА керамики, как показано, ограничено из-за стабилизации диоксида циркония кальцием из ГА при температуре спекания [251]. Возможности армирования ГА-матрицы неорганическими волокнами, например Al2O3 или SiC, также лимитированы рассогласованием коэффициентов термического расширения матрицы и волокна, приводящего к образованию растягивающих напряжений в матрице, которые снижают прочность. В [181] показана возможность повышения прочности в 2 раза и трещиностойкости в 6 раз горячепрессованной ГА-керамики в результате ее армирования дискретными металлическими волокнами (нержавеющая сталь, сплав хастеллой), вводимыми в керамическую матрицу в количестве до 20 об.%. Полученные композиционные материалы имеют прочность до 224 МПа, трещиностойкость 6,0-7,4 МПа´m1/2 и модуль нормальной упругости до 142 ГПа. Однако, для керамико-металлических имплантатов характерна коррозия и негативные реакции с тканями.

Один из наиболее интересных подходов для повышения прочности и уменьшения хрупкости ГА керамики – изготовление композитов ГА - полимер.

В работах [256,261] разработаны композиционные материалы на основе полиэтилена. С увеличением содержания до 40% ГА в композите модуль Юнга увеличивается, и находится на уровне 1-8 ГПа, что близко к таковому у естественной кости. Однако полиэтилен является биоинертным материалом и уменьшает способность срастания имплантата с костной тканью.

Известны работы [255,264-266], направленные на изучение композитов ГА – коллаген, которые по составу схожи с естественной костью. Композиты могут быть изготовлены посредством смешивания порошка ГА с раствором коллагена и последующим затвердеванием смеси под УФ - излучением или прессованием смеси ГА-коллаген при температуре 40 0С и давлении 200 МПа. Однако полученные материалы имеют низкие прочностные характеристики, например прочность при растяжении равна 6,5 МПа, а модуль Юнга 2 ГПа. Биомиметический подход к получению композитов ГА-коллаген основан на осаждении кристаллов ГА из растворов СБФ (simulated body fluids), повторяющих состав межтканевой жидкости, на волокна коллагена. При этом получается пористый материал с энергией разрушения

510 Дж/м2 [21]. Прочностные свойства большинства композитов ГА-коллаген неудовлетворительны. В то же время эти материал показывают более высокую биоактивность, нежели гидроксиапатит и коллаген в раздельности. Используя коллаген, можно создавать материалы с контролируемой резорбируемостью. Коллаген (желатин) часто используют как материал - носитель лекарственных средств пролонгированного действия [21].

Возможен также альтернативный подход, основанный на введении полимера в керамическую матрицу. Это позволило бы создать материалы с непрерывным керамическим каркасом. Механические свойства таких керамико-полимерных материалов в значительной степени должны отличаться от свойств полимерно–керамических материалов.

В работах [267-268] приведены результаты по формированию микроструктуры композиционных материалов ГА-полимер при вакуумной пропитке керамики водными растворами некоторых полимеров и механическим свойствам композитов. Способ приготовления основан на инфильтрации раствора полимера (желатин и поливиниловый спирт (ПВС)) в пористую керамическую матрицу с последующей сушкой композиции.

Страницы: 1 2 3

Смотрите также

Диаграммы состояния трехкомпонентных систем
...

Методы синтеза технологических схем разделения
Для проведения синтеза оптимальных технологических схем необходимо знать: 1.                Физико - химические и химиче ...

Ультразвуковая экстракция полисахаридов льна
Главным источником многих биологически активных соединений все еще остается натуральное сырье, как животного, так и растительного происхождения, несмотря на то, что современная химия достиг ...