Вторичная и третичная структуры ДНК.
Дипломы, курсовые и прочее / Белки и нуклеиновые кислоты / Дипломы, курсовые и прочее / Белки и нуклеиновые кислоты / Вторичная и третичная структуры ДНК. Вторичная и третичная структуры ДНК.

Нуклеотидный состав ДНК (независимо от источников ее выделения) имеет общие закономерности, которые известны как правила Чаргаффа (по имени ученого, сформулировавшего эти правила).

1. Число пуриновых оснований (А+G) равно числу пиримидиновых оснований ( Т+С), т. е. отношение пуринов к пиримидинам равно единице.

2. Число остатков аденина равно числу остатков тимина, т.е. отношение аденина к тимину равно единице (А/Т = 1,0)

Эти количественные соотношения были подтверждены исследованиями других ученых и стали важной предпосылкой при установлении трехмерной структуры ДНК и помогли понять каким образом генетическая информация кодируется в ДНК и передается от одного поколения к другому.

Базируясь на данных рентгеноструктурного анализа и правилах Чаргаффа Дж. Уотсон и Ф. Крик в 1953г. предложили следующую модель строения ДНК. Согласно этой модели, молекула ДНК состоит из двух полинуклеотидных антипараллельных цепей (5/®3/)(3/®5/) спирально право-закрученных одна относительно другой таким образом, что углеводнофосфатная цепь находится снаружи, а пуриновые и пиримидиновые основания внутри перпендикулярно центральной оси схема ДНК. Эти две цепи соединяются между собой водородными связями, возникающими между пуриновыми и пиримидиновыми основаниями отдельных нуклеотидов, образуя специфические пары.

Тимин связан тремя водородными связями с аденином ТºА, цитозин двумя водородными связями с гуанином G = С. Эти пары оснований называются комплементарными парами оснований. Благодаря этому нуклеотидная последовательность одной цепи полностью комплементарна последовательности другой.

Парные основания могут охватывать миллионы оснований в ДНК. Это возможно только тогда, когда полярность обоих нитей различна, т.е, когда нити имеют различное направление (различную ориентацию). Кроме того, обе нити должны быть скручены друг вокруг друга в виде двойной спирали. РНК не может образовывать из-за стерических помех, благодаря 2/ - ОН групп рибозных остатков, подобную двойную спираль. Поэтому в РНК попарное соединение азотистых оснований находят только в пределах коротких участков одной и той же нити, и структура в целом менее регулярна, чем для ДНК.

Рисунок 4 – Схема образования водородных связей между комплементарными азотистыми основаниями

Рисунок 5 – Схематическое изображение двойной спирали ДНК

Водородные связи между парами оснований – не единственный вид взаимодействий, стабилизирующих двухцепочечную структуру. Молекула ДНК – полианион, и на ее поверхности локализовано множество отрицательных зарядов, что обеспечивает стабилизацию путем электростатических взаимодействий с неорганическими противоионами, например с Mg+2,или белками, содержащими большое количество положительно заряженных боковых цепей аминокислот – гистонами. Третий стабилизирующий фактор возникает благодаря гидрофобным взаимодействиям между азотистыми основаниями, которые уложены стопкой внутри спирали. Между нитями по всей длине ДНК лежат углубления – маленькая и большая бороздки.

Так как обе нити удерживаются вместе благодаря нековалентным взаимодействиям, то двойную спираль можно разделить нагреванием (денатурацией) на одиночные нити (рисунок 5). При медленном охлаждении структура двойной спирали снова восстанавливается. Денатурация ДНК играет важную роль в генной инженерии. В зависимости от рН среды, ионной силы раствора, концентрации воды и т.п. конфигурация двойной спирали может меняться. Методами рентгеноструктурного анализа доказано существование более десяти форм ДНК, которые различаются количеством пар оснований приходящихся на один виток, углом наклона оснований к вертикальной оси. Наиболее изучены А-, В-, С- и Т-формы ДНК. Предполагают, что каждая форма ДНК приспособлена для выполнения определенной биологической функции. А-форма ДНК с передачей информации от ДНК к РНК, В-форма – с биосинтезом ДНК и С-форма с хранением, упаковкой ДНК.

Рисунок 6 – разделение двойной спирали ДНК на одиночные нити

В последние годы появились данные о возможности существования левозакрученной биспиральной молекулы ДНК-Z-формы и SBS формы ДНК, у которой полидезоксирибонуклеотидные цепи располагаются бок о бок (лесенкой, без закручивания). Такая форма ДНК обеспечивает легкое распаривание и расхождение цепей ДНК, что очень важно при биосинтезе ДНК.

ДНК обладает специфической третичной структурой. Двухцепочечная спираль ДНК на отдльных участках может подвергаться дальнейшей укладке в суперспираль. Может приобретать кольцевую форму, или свертываться в клубок. Суперскрученная структура обеспечивает экономную упаковку огромной молекулы ДНК в хромосоме. Суперспирали соединяются с белками (гистонами), упакованными в бороздах, обеспечивая тем самым стабильность третичной структуры ДНК.

Смотрите также

Важнейшие представители ароматических аминов
Анилин впервые был получен в результате перегонки индиго с известью (1826г.). В 1842 г. его получил Зинин восстановлением нитробензола. В незначительных количествах содержится в каменноугольной смол ...

Красители на основе 2-амино-5-меркапто-1,3,4-тиадиазола
Красителями, в широком смысле этого слова, называют органические соединения, обладающие способностью поглощать и преобразовывать световую энергию в видимой и ближних ультрафиолетовой и инфра ...

Получение уксусной кислоты
...