Адсорбция полимеров на неорганических носителях. Теории адсорбции полимеров
Дипломы, курсовые и прочее / Адсорбция полимеров на неорганических носителях / Дипломы, курсовые и прочее / Адсорбция полимеров на неорганических носителях / Адсорбция полимеров на неорганических носителях. Теории адсорбции полимеров Адсорбция полимеров на неорганических носителях. Теории адсорбции полимеров
Страница 1

В 1953 году Фриш, Сима и Ирих одними из первых исследовали изменение в конформациях при соприкосновении Гауссовских цепей с поверхностью и просчитали термодинамические характеристики адсорбционного слоя, а также построили изотерму адсорбции (FSE изотерму). Данные расчеты позволили сделать важный вывод: толщина адсорбционного слоя (q) в точки θ пропорциоальна квадратному корню из молекулярной массы полимера (Mp):

qθ = Mp1/2

Позже в начале 60 годов ХХ века данное предположение было оспорено Силбербергом и Димарцио, которые показали, что Фриш и др. не приняли во внимание различные конформации адсорбированной цепи. Димарцио и Маккрекин показали, что для правильного расчета числа конформаций адсорбция должна проходить одностадийно.

В середине 60 годов начались широкомасштабные изучения адсорбции полимеров. На ранних стадиях исследования основными направлениями являлись конформации изолированных цепей, распределение петлей, цепей и хвостов, и различная толщина адсорбированных макромолекул, их статистическое распределение и в это же время стал использоваться метод компьютерного моделирования под названием «метод Монте Карло» [4].

При огромном количестве теоретической базы по данной тематике, практических работ было немного, т.к. экспериментально доказать, что полимерные цепи адсорбируется изолированно было не возможно.

Главный интерес в исследованиях представляла собой взаимосвязь между поглощающей способностью (масс.%) (А), степенью адсорбции (количество сегментов на одном участке) (Г), различием сегментов в цепях (р) и толщины адсорбционного слоя с такими физическими величинами, как молекулярный вес полимера и параметрами термодинамического взаимодействия между полимером и растворителем и между адсорбирующей полимер поверхностью. Были попытки сформулировать теорию адсорбции полиэлектролитов и теорию отслаивания [5].

В 1955 году гидродинамическим методом была измерена толщина адсорбционного слоя, в 1961 году с помощью инфракрасной спектроскопии впервые определили параметр р, а разработанный метод эллипсометрии в 1963 году позволил одновременно вычислять поглощающая способность и толщину слоя.

До конца 70 годов не было ни одной полноценной теории адсорбции полимеров, а параметры из существующих теорий нельзя было сопоставить с экспериментальными данными.

Широко известно, что свободносочлененная полимерная цепь в идеальном растворителе ведет себя как статистический клубок. При адсорбции такого полимера происходит изменение его конформации. Часть сегментов цепи непосредственно связывается с поверхностью (цепь), а оставшиеся сегменты вытягиваются в растворе (петли и хвосты) (см. рис.1). Если сегмент берет начало на поверхности, то формация «хвост» более выгодна термодинамически, чем формация «петля» [6].

Существует несколько теорий, описывающих адсорбцию неионных полимеров. Первую из них предложил Хов. Он предполагал, что полимерные цепи имеют достаточно большую длину и концевой эффект (формация «хвост») может не рассматриваться, и покрытие поверхности так мало, что взаимодействием между адсорбированными цепями можно пренебречь.

Уравнение изотермы адсорбции выглядит следующим образом:

Na/Sδ = (Nf/V)exp(-λn),

где Na – количество адсорбированного полимера, S – площадь поверхности, δ – толщина первого слоя (слоя «цепь»), Nf – количество неадсорбированного полимера, V – объем растворителя, n – общее количество сегментов в полимерной цепи, λ – константа, определяемая графически исходя из графика ln(Na/Sδ) – ln(Nf/V). В термодинамически хорошем растворителе при уменьшении (-λ) и при увеличении фракции адсорбированных сегментов средний размер петель уменьшается.

Страницы: 1 2

Смотрите также

Водородные связи
Интерес к олигомерам фторида водорода (димеру, тримеру) в последние десятилетия поистине велик. Объясняется это прежде всего той ролью, которую играет водородная связь при интерпретации, мод ...

История открытия редких химических элементов
Элементы побочной подгруппы 3-ей группы и семейство, состоящих из 14 F-элементов с порядковыми номерами от 58 до 71, весьма близки к друг другу по своим химическим и физико-химическим свойств ...

Химическое выветривание
Химическое выветривание — это совокупность различных химических процессов, в результате которых происходит дальнейшее разрушение горных пород и качественного изменения их химического состава с обра ...