Управление структурно-механическими свойствами материалов
Учим химию / Учим химию / Управление структурно-механическими свойствами материалов Управление структурно-механическими свойствами материалов
Страница 2

Основными факторами, определяющих структуру и реологические свойства дисперсной системы, является концентрация частиц в объемных долях и потенциал парного взаимодействия частиц. График зависимости энергии взаимодействия двух частиц от расстояния между ними называется потенциальной кривой

(рис. 4.2.2.3). Основными параметрами потенциальной кривой является высота потенциального барьера Umax, глубина потенциальной

ямы Umin (энергия связи частиц) и координата минимальной энергии h0. В разбавленных агрегативно-устойчивых системах (Umax>>KT и Umin<<KT, КТ – энергия теплового движения частиц).

Частицы полностью сохраняют полную свободу перемещения и не имеют структуры. Такие системы является ньютоновскими и вязкость их подчиняется уравнениям Эйнштейна коагулирующей системы, возникающей при коагуляции частиц на расстояниях, отвечающих вторичному минимуму на потенциальной кривой (h0). Коагуляция в первичном минимуме приводит к образованию конденсированных кристаллических структур.

Чтобы представить упрощенно процесс образования структуры в дисперсных системах, рассмотрим особенности седиментационных объемов, отличающих агрегативно устойчивые и неустойчивые системы.

В агрегативно устойчивых системах после оседания частиц образуется плотный осадок малого седиментационного объема и выделяется рыхлый осадок, занимающий большой объем. После декантации получают системы с минимальной концентрацией дисперсной фазы, отвечающей образованию структуры – пространственного каркаса из частиц дисперсной фазы. Эту концентрацию называют критической концентрацией структурообразования. В соответствии с седиментационными объемами и концентрациями дисперсной фазы в осадках различают плотную и свободную упаковку частиц. При плотной упаковке концентрация дисперсной фазы максимальна, свободной упаковке соответствует минимальная концентрация дисперсной фазы, при которой может образоваться структурная сетка. При той и другой упаковке характерно наличие предела текучести, который может возникнуть при контакте частиц друг с другом. Объем свободной упаковки, как и седиментационный объем, возрастает (снижается критическая концентрация структурообразования) уменьшением дисперсности, анизометрии частиц дисперсной фазы и образующихся первичных агрегатов. Соприкасаясь своими концами, частицы и их агрегаты образуют структурную пространственную сетку. Чем выше дисперсность и сильнее анизометрия частиц и агрегатов, тем при меньшей концентрации появляется предел текучести. Большими объемами свободной упаковки обладают суспензии с пластинчатыми мицеллами гидроксидов железа и алюминия, с кольчатыми мицеллами пятиоксида ванадия и другие нитевидные молекулы органических полимеров, особенно с полярными группами, придающими жесткость макромолекулам, образуются твердообразные структуры в водной среде при очень малых концентрациях полимера (агара 0,1%, желатина 0,5%). Подобные твердообразные структуры называют гелями, а применительно к растворам полимеров – студнями.

Твердообразные дисперсные системы, внутри которых распределена жидкость, в коллоидной химии называют гелями. В России за гелями, образованными из растворов органических высокомолекулярных систем (ВМС), установилось название студней. К гелям можно отнести торф, уголь, древесину, бумагу, адсорбенты, кожу, зерно, и другие.

Эластичными свойствами отличаются студни с коагуляционной структурой, например, желатин, тесто и другие. Также студни образуются в растворах линейных и разветвленных высокомолекулярных систем (ВМС) в не очень хороших растворителях. В хороших растворителях студни не образуются. Студни с коагуляционной структурой могут разрушаться с повышением температуры и переходить в состояние раствора. Этот процесс называется плавлением. Студни конденсированного типа образуются при трехмерной полимеризации в растворе или в результате набухания пространственного полимера. Химические связи между макромолекулами не разрушаются при нагревании, поэтому такие студни не плавятся, типичным примером таких студней ионообменные смолы.

Для гелей характерен процесс старения. Он заключается в постепенном упрочнении структуры, ее сжатии и высвобождении части жидкости из структуры. Это явление называется синерезисом

. Переход коагуляционной структуры в конденсационную - пример синерезиса. Синерезис заключается в сжатии каркаса студня или геля (рис. 4.2.2.4), изменении взаимного расположения частиц и выдавливании преимущественно свободной жидкости. Вследствие синерезиса стуктура сжимается, сохраняя первоначальную форму. Жидкость, которая выделяется при синерезисе, помимо свободной может включать часть связанной воды, в которой попадаются даже частицы дисперсной фазы. Так, сыворотка, выделяющаяся после образования простокваши, является слабоконцентрированным золем.

Страницы: 1 2 3 4

Смотрите также

Исследование свойств продуктов циклизации алициклического 1,5,9-трикетона
Алициклические 1,5,9-трикетоны – малоизученный класс соединений, хотя первые сведения о них появились еще в 50-х годах прошлого века. Наличие нескольких реакционных центров делают трикетоны ...

Золь-Гель технология
Золь-гель технология (гелевая технология) (англ. The sol-gel process) - технология получения материалов с определенными химическими и физико-механическими свойствами, включающая получение ...

Разработка энергосберегающих технологий процесса ректификации продуктов синтеза хлорбензола
...