Методы исследования процесса растворения
Учим химию / Разработка методики определения ультрамикрограммовых количеств тяжелых металлов методом инверсионной вольтамперометрии / Анализ следовых количеств веществ и электрохимические инверсионные методы / Учим химию / Разработка методики определения ультрамикрограммовых количеств тяжелых металлов методом инверсионной вольтамперометрии / Анализ следовых количеств веществ и электрохимические инверсионные методы / Методы исследования процесса растворения Методы исследования процесса растворения

Принцип накопления вещества и последующего его электрохимического растворения не является новым; он был, например, использован для измерения толщины металлических пленок. Збинден [4] уже в 1931 г. определял следовые количества меди, осаждая ее на платиновом электроде и измеряя зависимость анодного тока от времени при соответствующем постоянном потенциале в процессе растворения пленки металла.

В пятидесятых годах прием электролитического накопления и последующего электрохимического растворения вещества был распространен на многие электрохимические методы. Наибольшую известность получила вольтамперометрия с линейным изменением потенциала во времени [5 – 7] в связи с ее методической и инструментальной простотой.

Осциллографическая полярография [8] (рабочий электрод поляризуется переменным током с постоянной плотностью, амплитудой и частотой, а на экране осциллографа регистрируется функция dj/dt = f(j), квадратноволновая полярография [9] и переменнотоковая полярография [10], хронопотенциометрия и кулонометрия [11 – 13] могут быть также использованы для исследования процесса растворения. В некоторых случаях для повышения чувствительности определения применяют нестационарные методы. Для исследования процесса электрохимического растворения используются, таким образом, любые методы, основанные на изучении стационарных и нестационарных поляризационных кривых (табл. 1.3).

Таблица 1.3. Методы, применяемые при исследовании инверсионного процесса 3

Контролируемый параметр

Измеряемая функция

Название метода

Стационарные методы

j

I = f(j)

Вольтамперометрия при постоянном потенциале

j

Кулонометрия при постоянном потенциале

j

Q = f(c)

Полярографическая кулонометрия

I

Q = It

Кулонометрия при постоянном токе

Нестационарные (потенциостатические) методы

j

I = f(t)

Хроноамперометрия

j = ji + wt

I = f(j)

Полярография и вольтамперометрия с переменным потенциалом (single sweep, multi-sweep)

j + j(t)

I(t) = f(j)

Полярография и вольтамперометрия с наложением переменного напряжения (переменнотоковая полярография квадратноволновая полярография, импульсная полярография)

Нестационарные (гальваностатические) методы

I

j = f(t)

Хронопотенциометрия

I + I sinwt

Осциллографическая полярография с переменным током

Смотрите также

Кинетика химических реакций
Одна из особенностей химических реакций заключается в том, что они протекают во времени. Одни реакции протекают медленно, месяцами, как, например, коррозия железа. Другие заканчиваются очень быстро ...

Фтор
ФТОР (лат. Fluorum), F, химический элемент с атомным номером 9, атомная масса 18,998403. Природный фтор состоит из одного стабильного нуклида 19F. Конфигурация внешнего электронного слоя 2s2 ...

Фтор
ФТОР (лат. Fluorum), F - химический элемент VII группы периодической си­стемы Менделеева, относится к галогенам, атомный номер 9, атомная масса 18,998403; при нормаль­ных условиях (0 °С; 0,1 ...