Важнейшие функции гумусовы веществ в биосфере
Страница 2

Несмотря на недостаточную изученность гумусовых кислот в целом, за последние 10 – 20 лет появились новые материалы и накоплено много оригинальных данных, раскрывающих структуру ГК и ФК. Этому способствовало внедрение новых оригинальных методов для изучения гумусовых кислот. К таким методам относятся новые совершенные модификации ядерного магнитного резонанса, различных видов хроматографии, пиролитических методов, масс-спектрометрии. Существенно меняются представления в области молекулярных пераметров гумусовых кислот, молекулярно-массового распределения, формирования органо-минеральных соединений с участием гумусовых кислот. Все это требует дальнейшего обобщения и осмысления богатого, а зачастую и противоречивого экспериментального материала. [7]. По А.И. Горовой, физиологическая активность гумусовых веществ наиболее полно проявляет себя при неблагоприятных воздействиях. Физиологическая активность гумусовых веществ важна и интересна не только с агрономических или медицинских позиций. Это свойство заставляет задуматься о природе физиологического действия, а следовательно, о строении, молекулярных формулах гуминовых кислот (ГК) и фульвокислот (ФК). Высокая и многопрофильная активность ГК и ФК обусловлена прежде всего больших набором функциональных групп, причем не только таких обычных, как карбоксильные, фенольные, спиртовые, но также хинонные, аминные, амидные, способные к образованию электровалентных и ковалентных связей, внутрикомплексных соединений. Эти группы обеспечивают регулирование соотношения свободных и комплексных ионов как в почвенном растворе, так и во внутриклеточной среде. Разнообразие и сложность функций, несомненно, связаны с полихимизмом гумусовых кислот, молекулы которых различаются по размерам, а функциональные группы образуют спектр соединений, различающихся по прочности связей и ближайшему окружению удерживаемых катионов металлов. Полидисперсность и полифункциональность обеспечивают высокую буферность гумусовых систем в отношении кислотно-основных, окислительно-восстановительных и многих других реакций.

Такая система неизбежно должна активно регулировать геохимически потоки металлов и некоторых органических соединений в биосфере. Отталкиваясь от физиологической активности ГК и ФК, мы неизбежно приходим к представлениям о единстве живого и гумуса в понимании В.И. Вернадского, к положению о неизбежном формировании системы гумусовых веществ, обеспечивающей современные формы наземной жизни.

Функции органических соединений в почвах разнообразны, а зачастую и противоречивы. Низкомолекулярные вещества обычно легко доступны микроорганизмам и участвуют в процессах мобилизации минеральных составляющих почвы, извлекая многие элементы из труднорастворимых соединений. Гуминовые кислоты выполняют в значительной мере консервативную роль, придавая почвам устойчивые признаки, существующие длительное время и обусловливая их многие важнейшие свойства и функции: запас гумуса, емкость, емкость катионного обмена и пр.

Устойчивые запасы гумуса в почвах обусловлены, прежде всего, гуминовыми кислотами и гумином. Отсюда вытекает общая принципиальная установка: для накопления в почвах гумуса недостаточно привнесения в почву дополнительных количеств органического вещества, будь то в форме растительных остатков, навоза или других органических материалов. Одновременно с внесением должны быть созданы условия, обеспечивающие возможно полную гумификацию органических соединений, т.е. превращение их преимущественно в гуминовые кислоты или в гумин. Это обусловливает важнейшую задачу одновременного и сопряженного изучения строения гуминовых кислот и процесса гумификации. Сопряженный анализ позволяет не только точно и глубоко отвечать на теоретические вопросы, но и разрабатывать эффективные мелиоративные приемы с использованием органических удобрений.

Забота только об устойчивых, консервативных свойствах и фракциях почвенного гумуса явно недостаточна при решении задач повышения плодородия и биологической продуктивности.

Почвенная биота нуждается в постоянно пополняемом запасе лабильных органических веществ. Это достигается как поступлением «свежего» органического вещества, так и частичной мобилизацией запасов специфических гумусовых веществ. Процессы мобилизации могут осуществляться путем химического и ферментативного гидролиза, окисления или восстановления гумусовых веществ, их фотохимической деструкцией, что наиболее интенсивно протекает в поверхностном слое верхнего, гумусного горизонта. Мобилизация органического вещества может сопровождаться переходом соединений в химически и физиологически активные формы. Этим, в частности, можно объяснить несоответствие между стимулирующим эффектом малых доз препаратов гуматов натрия и высоким содержанием малоактивных гуминовых кислот и гуматов в почве. Было высказано предположение, что в процессе выделение из почв и подготовки препаратов гуминовых кислот и гуматов натрия молекулы ГК видоизменяются и переходят в активированную форму. В частности, в щелочной среде под воздействием кислорода воздуха повышается степень окисленности гуминовых кислот, повышается концентрация парамагнитных центров (свободных радикалов) и хиноидных групп, снижаются молекулярные массы. Особенно быстро и активно эти изменения происходят в условиях достаточного освещения, что говорит о фотохимической природе явления. В щелочной среде молекулы гуминовых кислот приобретают «раскрытую» конфигурацию, и тогда боковые цепи и функциональные группы получают больше возможностей для участия в различных реакциях.[7].

Страницы: 1 2