Об особенностях развития вынужденной эластической деформации при растяжении стеклообразного полиэтилентерефталата в адсорбционно-активной среде
Учим химию / Учим химию / Об особенностях развития вынужденной эластической деформации при растяжении стеклообразного полиэтилентерефталата в адсорбционно-активной среде Об особенностях развития вынужденной эластической деформации при растяжении стеклообразного полиэтилентерефталата в адсорбционно-активной среде
Страница 2

Тем не менее, необходимо отметить, что многочисленные экспериментальные данные по зависимости числа микротрещин, возникающих при деформировании полимера в адсорбционно-активной среде, от степени вытяжки, полученные с помощью световой микроскопии [9] и положенные в основу описанного выше метода определения скорости роста микротрещин из кривых растяжения, являются весьма приблизительными. Эти данные были получены при периодической остановке процесса растяжения полимера; их сопоставляли с деформационными кривыми, полученными в условиях растяжения полимера с постоянной скоростью. В связи с этим в данной работе использовали прибор, с помощью которого можно следить за числом микротрещин и их линейными размерами непосредственно при деформировании полимера в адсорбционно-активной среде с постоянной скоростью, что позволяет корректно сравнить данные структурного исследования и динамометрии.

Прежде всего, следует отметить прямо пропорциональную зависимость длины микротрещин от времени деформирования полимера, т. е. в исследованном интервале скоростей деформирования микротрещины в ПЭТФ растут с постоянной скоростью (рис. 1).

Рис. 1. Типичная картина зависимости длины отдельных микротрещин от времени деформирования ПЭТФ при скорости деформирования 1,67-10-4 м/с

Другая важная особенность полученных данных — значительное различие в скоростях роста отдельных микротрещин. Оказывается, что при деформировании полимера в адсорбционно-активной среде скорость роста микротрещин в зависимости от степени деформации не является постоянной и различия в скоростях роста отдельных микротрещин в одном и том же образце могут достигать значительных величин.

Этот результат позволяет сделать важный вывод о том, что значения скорости роста микротрещин, определяемые из кривых растяжения [12],— некие усредненные величины. Были измерены скорости роста большого числа индивидуальных микротрещин (не менее 200 для каждых условий деформирования), и после статистической обработки эти данные были представлены в виде соответствующих кривых распределения.

На рис. 2 представлены кривые распределений микротрещин по линейным скоростям роста для трех скоростей деформирования. Как видно, кривые распределения асимметричны по форме и имеют четко выраженный максимум, соответствующий наиболее вероятной линейной скорости роста микротрещин.

Хорошо видно, что увеличение скорости деформирования от 8,33 • 10~6 до 1,67-Ю-4 м/с приводит к расширению распределения в область более высоких скоростей.

Полученные результаты представляются весьма важными, поскольку они позволяют получить информацию не только о характере деформации полимера в адсорбционно-активной среде, но и о структуре деформированного полимера.

Действительно, полученные данные подтверждают важную роль микродефектности полимера в его механическом поведении [9, 13]. Проявлением такой неоднородности является, в частности, возникновение шейки в деформируемом полимере в каком-либо одном, самом «опасном» месте.

Наличие распределения скоростей роста микротрещин в деформируемом полимере свидетельствует о существовании в материале набора микродефектов, создающих набор концентраторов напряжения, инициирующих локализованную пластическую деформацию. Эти концентраторы напряжения различаются по «опасности» и вовлекаются в процесс инициирования локализованной пластической деформации, т. е. в процесс зарождения микротрещин при различных уровнях напряжения, запасенных образцом.

В силу замедленности релаксационных процессов, протекающих в стеклообразных полимерах, уровень запасаемых полимером напряжений легко изменять, меняя скорость его деформации.

Как видно из рис. 2, при этом не только возрастает наиболее вероятная линейная скорость роста микротрещин, но и заметно расширяется их распределение, что свидетельствует о вовлечении в процесс деформации множества новых концентраторов напряжения.

Страницы: 1 2 3 4

Смотрите также

Реакции альдегидов и кетонов: присоединение углеродных нуклеофилов
...

Фазовые равновесия в системе MgS-Y2S3
Соединения с участием РЗЭ остаются по прежнему обширным резервом для создания новых материалов. Возможно создание материалов с уникальными, заранее заданными свойствами. Взаимодействие в ...

Разнообразие систем, формируемых дифильными веществами
...