Формальная кинетика сложных реакций
Учим химию / Учим химию / Формальная кинетика сложных реакций Формальная кинетика сложных реакций
Страница 2

б) Если значительно превалирует константа скорости 2-й стадии, то промежуточный продукт находится в системе в минимальных количествах, 1-я стадия лимитирующая и определяет вид кинетической кривой накопления продукта B. Вторая стадия на графике как бы не просматривается.

в) Может иметь место случай сравнимых скоростей обеих стадий реакции. Это случай и более сложный, и менее однозначный. Эти положения достаточно легко иллюстрируются графически (см. учебник Краснова).

Двусторонние (обратимые) реакции первого порядка

Проблема систематического описания сложных реакций сложна, и в наиболее общем виде решается лишь численными (и не аналитическими) методами . Разработаны различные аналоговые методы, позволяющие даже в очень непростых случаях эффективно графически моделировать кинетические кривые. Вместе с тем часто есть возможность избежать последовательного решения системы дифференциальных уравнений, заменяя точные решения приближёнными. Не располагая возможностью рассмотреть всю проблему в полном объёме, мы вынуждены ограничиться лишь несколькими характерными примерами …

1) Метод квазистационарных концентраций Боденштейна

Рассмотрим примеры сложных реакций, представляющих собою суперпозицию последовательных и параллельных превращений и введём некоторые важные приёмы их описания:

 

Пример 1.1 (относительно простой)

протекает по двум или более путям. Этот принцип чрезвычайно важен при анализе внутримолекулярных процессов типа циклических движений марковских перескоков в виде трёхпозиционного вращения.

См. примеры.

Пример 3.1. Рассмотрим кинетическую схему реакции:

и ту же самую реакцию в присутствие протонов:

Скорость реакции равна:

И в условиях равновесия приходим к сомнительному результату вида:

(4.7)

Возникает парадокс, согласно которому константа равновесия, вопреки незыблемым установкам термодинамики, выглядит зависимой от концентрации протонов. Для его устранения вводится принцип детального равновесия. Он состоит в том, что система кинетических уравнений дополняется условиями детального равновесия:

(4.8)

В результате концентрация протонов исчезает из выражения константы скорости, а именно:

(4.9)

Пример 3.2. Рассмотрим кинетику циклического превращения вида:

Если уравнение скорости реакции включает сумму различных членов для прямой реакции, что указывает на возможность нескольких путей её протекания, то принцип детального равновесия требует, чтобы каждый член в выражении для скорости прямой реакции был скомпенсирован при равновесии соответствующим членом в выражении для скорости обратной реакции.

4) Мономолекулярные реакции. Схема Линдемана.

Существование мономолекулярных реакций типа реакций разложения в газах необычно с точки зрения бимолекулярного механизма накопления энергии активации. Наблюдаемый порядок первый, а стадия активации не может быть иной, как бимолекулярной. В чём же дело? В качестве варианта объяснения этой ситуации Линдеман предложил такие процессы рассматривать как сложные, включая в них следующие стадии:

(4.9)

Отсюда следует простой результат.

(4.10)

Экспериментальные данные часто не вполне соответствуют простой формально-кинетической схеме Линдемана, однако теоретические уточнения позволяют достичь приемлемого количественного и качественного согласия наблюдаемых фактов с этим механизмом. Всё же в основном идея балансирования между стадиями активации, дезактивации и самого превращения оказывается верна.

Пример 4.1 , илюстрирующий схему Линдемана: Реакция разложения диметилового эфира

5) О роли газокинетических моделей, из которых вытекают основные воззрения химической кинетики и о доводах в её пользу. (Забегаем немного вперед в части представлений об активации химического процесса).

Страницы: 1 2 3

Смотрите также

Ароматические соединения с конденсированными ядрами
Два ароматических кольца, имеющих два общих углеродных атома называются конденсированными. Простейший представитель ароматических соединений с двумя конденсированными ядрами - нафталин. Существуют ...

Характеристика элементов подгруппы азота
...

Адсорбция
Адсорбция (от лат. ad — на, при и sorbeo — поглощаю), поглощение к.-л. вещества из газообразной среды или раствора поверхностным слоем жидкости или твёрдого тела. Например, если поместить в ...