Изменение концентрации фаз при фазовом обмене при постоянной температуре и давлении.
Статьи и работы по химии / Исследование фазовых эффектов в бинарных азеотропных смесях / Литературный обзор. / Статьи и работы по химии / Исследование фазовых эффектов в бинарных азеотропных смесях / Литературный обзор. / Изменение концентрации фаз при фазовом обмене при постоянной температуре и давлении. Изменение концентрации фаз при фазовом обмене при постоянной температуре и давлении.

Рассмотрим изменение концентрации компонента i в жидкой фазе в зависимости от того, приходит dm молей паровой фазы в жидкую или уходит dm молей паровой фазы из жидкой.

Здесь существует два способа вывода уравнений.

1. Бесконечно малое количество компонента i может быть выражено двояко:

с одной стороны [16]

dmi = d(m xi) 1.20

с другой стороны

dmi= yidm 1.21

приравняв эти выражения, получаем:

d(m xi) = yidm 1.22

т.е. m dxi+ xi dm = yidm 1.23

m dxi = (yi -xi) dm

или , где dt= dln m 1.24

Допустим i=1 Ki>1, тогда

yi >xi dt>0, dxi>0

dt<0, dxi<0

если i=2 Ki<1,

yi <xi dt>0, dxi<0

dt<0, dxi>0

2. Второй способ изложен в [17]

Для систем испарения:

m xi =(m-dm)( xi -dxi) + yi dm 1.25

m xi = m xi -m dxi- xi dm + dm dxi + yi dm

после отбрасывания бесконечно малых второго порядка имеем:

m dxi=( yi -xi)dm

; dt= dln m<0

Если же идет конденсация dm молей пара в жидкость, имеем:

yi dm + m xi = (m+dm)( xi +dxi) 1.26

или

yi dm + m xi = m xi + m dxi +xi dm + dm dxi

dm (yi - xi) = m dxi 1.27

; dt= dln m>0 1.28

Обоими методами мы получили один и тот же результат, а именно: если рассматривается изменение состояния жидкой фазы, используется нода, а не ренода.

Теперь рассмотрим изменение концентрации компонента i в паровой фазе, в зависимости от того, приходит ли dm молей состава xi из паровой фазы. Здесь также существует два метода вывода уравнений:

1. Для систем испарения:

xi dm= d(m yi) 1.29

xi dm= yi dm + m dyi 1.30

dm (xi- yi) = m dyi 1.31

или 1.32

2. Для систем конденсации:

m yi =(m-dm)( yi -dyi) + xi dm 1.33

m yi = m yi -m dyi- yi dm + dm dyi + xi dm

после отбрасывания бесконечно малых второго порядка имеем

m dyi=(xi -yi)dm 1.34

или , dt= dln m<0 1.35

Для систем смешения (с dt>0)

m yi + xi dm = (m+dm)( yi +dyi) 1.36

m yi + xi dm = m yi + m dyi-+ yi dm + dm dyi 1.37

dm (xi- yi ) = m dyi 1.38

, dt= dln m>0 1.39

Второй метод более громоздок. Каждый вывод предусматривает dt>0 или dt<0.

Первый метод более универсален и лаконичен. Основной вывод заключается в том, что при исследовании изменения концентраций за счет добавления или удаления из данной фазы dm молей состава другой фазы, для жидкой фазы используется нода, а для паровой фазы - ренода. Это правило действует в случае балансовых соотношений.

Смотрите также

Поиск оптимального содержания пигмента в покрытиях на основе алкидного лака ПФ-060
...

Получение пурпуреосоли. Аммиакаты кобальта (III)
Подразделение всех химических соединений на так называемые простые, или атомные, и комплексные, или молекулярные наметилось, наметилось после создания учения о валентности и внедрения в хим ...

Органическая химия
...