Аппаратурное оформление процесса
Статьи и работы по химии / Газовая хроматография / Статьи и работы по химии / Газовая хроматография / Аппаратурное оформление процесса Аппаратурное оформление процесса
Страница 2

соответственно температура спирали. Это приводит к из­менению сопротивления нити, которое измеряют с помо­щью моста Уитстона (рис. 7). Сравнитель­ный поток газа-носителя омывает нити ячеек R1 и R2 а газ, поступа­ющий из/колонки, омывает нити измерительных ячеек С1 и С2. Если у четырех нитей одинаковая температура (одинаковое сопротивление), мост нахо­дится в равновесии. При изменении состава газа, выходящего из колонки, сопротивле­ние нитей ячеек С1 и С2 меняется, равновесие нарушается и генерируется выходной сигнал.

Подпись: Рис. 7. Схема моста Уитстона:
1 - вход газа из колонки; 2 - ввод чистого газа-носите¬ля; 3 - источ-ник тока; 4 - регулятор тока, про-ходящего через нити; 5 - миллиам-перметр; 6 - установка нуля
На чувствительность катарометра сильно влияет теплопроводность газа-носителя, поэтому нужно использовать газы-носители с максимально возможной теплопроводностью, например гелий или водород.

Детектор электронного захвата представляет собой ячейку с двумя электродами (ионизационная камера), в которую поступает газ-носитель, прошедший через хроматографическую колон­ку (рис. 8). В камере он облучается постоянным потоком b-элек­тронов, поскольку один из электродов изготовлен из материала, яв­ляющегося источником излучения (63Ni, 3Н, Подпись: Рис.8 Схема электрон-но-захватного детек-тора: 1 - ввод газа; 2 - источник излучения; 3 - вывод в атмосферу; 4,5 - электроды226Ra). Наиболее удобный источник излучения — титановая фольга, содержащая адсорбированный тритий. В детекторе происходит реакция свободных элект­ронов с молекулами оп­ределенных типов с образованием стабильных анионов: АВ + е = АВ- ± энергия, АВ+е=А + В- ± энергия. В ионизо­ванном газе-носителе (N2, Не) в качестве отрицательно заря­женных частиц присутствуют только электроны. В присутст­вии соединения, которое может захватывать электроны, иони­зационный ток детектора уменьшается. Этот детектор дает от­клик на соединения, содержащие галогены, фосфор, серу, нит­раты, свинец, кислород; на большинство углеводородов он не реагирует.

Пламенно - ионизационный детектор (ПИД). Схема ПИД приведена на рис. 9. Выходящий из колонки газ сме­шивается с водородом и поступает в форсунку горелки детектора.

Подпись: Рис. 9 Схема ПИД: 1 - ввод газа на колонки; 2 - ввод водорода; 3 - вывод в атмосферу; 4 - со-бирающий электрод; 5 - катод; 6 - ввод воздухаОбразующиеся в пламени ионизованные частицы заполняют межэлек­тродное пространство, в результате чего сопротивление снижается, ток резко усиливается. Стабильность и чувствительность ПИД зависит от подходящего выбора скорости потока всех используемых газов (газ-носитель ~30—50 мл/мин, H2 ~30 мл/мин, воздух ~300—500 мл/мин). ПИД реагирует практически на все соединения, кроме Н2, инертных газов, О2, N2, оксидов азота, серы, углерода, а также воды. Этот детек­тор имеет широкую область линейного отклика (6—7 порядков), поэто­му он наиболее пригоден при определении следов.

Страницы: 1 2 

Смотрите также

Оксогидроксид марганца (III) MnO(OH) и его синтез
...

Распространенные элементы. строение атомов. Электронные оболочки. Орбитали
Химический элемент– определенный вид атомов, обозначаемый названием и символом и характеризуемый порядковым номером и относительной атомной массой. В табл. 1 перечислены распространенны ...

Заключение.
1.         Определены частные фазовые эффекты для бинарных азеотропных смесей при постоянных давлении и температуре. 2.      Определены общие и частные фазовые эффекты в азеотропной точке, а так ...