Ge-Si гетероструктуры с квантовыми точками
Страница 1

Рост SiGe растворов, с низким содержанием дефектов, и Ge-Si гетеропереходов, имеет большое значение для прикладных целей, таких, например, как электронных и оптических приборов большой мощности. Хотя А3В5 технология продемонстрировала более лучшие характеристики, по сравнению с кремниевой, тем не менее, кремниевая технология все еще доминирует на рынке над А3В5, которая составляет малый процент всех продаж. Есть много разных причин, которые могут объяснить данное обстоятельство, но главная их них – это цена. Стоимость изготовления схем, на один квадратный сантиметр, на основе КМОП в сто раз дешевле аналогичных использующих А3В5 технологию. Использование некоторых соединений А3В5 обходится еще дороже, поэтому А3В5 технология еще не скоро сможет конкурировать с КМОП за большую часть рынка полупроводников. Приборы на основе германий кремниевых гетеропереходов интегрированные с КМОП для создания схем, уже значительно дешевле, чем А3В5 технологии, несмотря на то, что германий кремниевому направлению всего около 15 лет. Добавление в технологический процесс эпитаксии германия, по мнению Microsystems Inc. добавит всего 15% к стоимости продукта[]. Поэтому системы на основе сочетания германия и кремния давно привлекают исследователей, для возможности получения приборов с новыми характеристиками. Биполярные транзисторы с SiGe гетеропереходом уже выпускаются IBM, Simens и другими компаниями.

Одно из направлений исследований на основе сочетания германия и кремния явилось создание структур содержащих GexSi1-x нанокластеры в кремниевой матрице. Гетероструктуры с пространственным ограничением носителей заряда во всех трех измерениях (квантовые точки) реализуют предельный случай размерного квантования в полупроводниках, когда модификация электронных свойств материала наиболее выражена. Электронный спектр идеальной квантовой точки (КТ) представляет собой набор дискретных уровней, разделенных областями запрещенных состояний, и соответствует электронному спектру одиночного атома, хотя реальная квантовая точка при этом может состоять из сотен тысяч атомов. Таким образом, появляется уникальная возможность моделировать эксперименты атомов физики на макроскопических объектах. С приборной точки зрения, атомоподобный электронный спектр носителей в квантовых точках в случае, если расстояние между уровнями заметно больше тепловой энергии, дает возможность устранить основную проблему современной микро– и опто–электроники – "размывание" носителей заряда в энергетическом окне порядка kT, приводящее к деградации свойств приборов при повышении рабочей температуры.

Возросший интерес к таким нанокластерам связан с рядом обстоятельств. Это успехи в разработке технологии получения достаточно однородного по размеру массива нанокластеров Ge. Размеры нанокластеров удалось уменьшить до значений, обеспечивающих проявление эффектов размерного квантования и электрон-электронного взаимодействия вплоть до комнатной температуры. Разработанные методы совместимы с существующей кремниевой технологией изготовления дискретных приборов и схем. Такие разработки, считавшиеся до последнего времени экзотическими, могут привести к настоящей революции в кремниевой интегральной технологии. Светоизлучающие и фотоприемные кремний - германиевые устройства, позволят кремниевой технологии успешно конкурировать с традиционно оптоэлектронными материалами, такими как соединения А3В5.

С 1992 года начинают происходить изменения в технологии получения структур с квантовыми точками. До этого времени основным способом создания таких структур была фотолитография, с присущим этому методу ограничением в минимальных размерах. Проявление эффекта самоорганизации упорядоченных массивов островков нанометровых размеров в гетеросистемах Ge-Si и InAs-GaAs позволило получать бездефектные квантовые точки предельно малых размеров (10 - 100 нм) с плотностью 1010 - 1011 см-2 и привело к более четкому проявлению атомно-подобных характеристик в электронных и оптических спектрах этих объектов.

Страницы: 1 2

Смотрите также

Производство экстракционной фосфорной кислоты
Фосфорная кислота является основным сырьем для производства фосфорных удобрений, кормовых добавок, инсектицидов и других фосфорсодержащих продуктов. Общее мировое потребление фосфатного сырь ...

Основные задачи термохимии. Использование калориметрических методов для определения теплот растворения солей
...

Разработка школьного элективного курса "Полимеры вокруг нас"
...