Механизмы, которые обеспечивают селективность и выборочность биосенсоров
Дипломы, курсовые и прочее / Конструирование биосенсора для регистрации P. aeruginosa АТСС 27853 / Дипломы, курсовые и прочее / Конструирование биосенсора для регистрации P. aeruginosa АТСС 27853 / Механизмы, которые обеспечивают селективность и выборочность биосенсоров Механизмы, которые обеспечивают селективность и выборочность биосенсоров
Страница 1

Рассмотрим три типа биосенсоров - спектроэлектрохимический, ферментативный амперометрический и резистометрический (кондуктометрический). Биосенсоры - разновидность химических сенсоров - часто обладают отличной селективностью благодаря специфичности биологических реакций, но в них есть недостаток - малый срок службы. Применение химически селективных мембран в известной мере снижает посторонние препятствия. Увеличение селективности к определенному анализируемому раствору или классу таких растворов достигается путем использования спектроэлектрохимии химически селективных пленок [4], которые наносят на поверхность электрода. В этом случае для определения агента последний должен быть: 1) распределятся в пленке, которая обладает химической выборочностью; 2) окисляться или восстанавливаться на поверхности электрода при заданном потенциале; 3) его окисленная или восстановленная форма должна поглощать свет некоторой заданной длинны волны, используемой для определения. На рисунке 1 показана схема, которая демонстрирует работу спектроелектрохимического биосенсора.

Рисунок 1. Схема оптоэлектрохимического биосенсора. Обозначение: (Ä - вещества, которые проникают в пленку; Æ – вещества, которые проникают в пленку, но не поддаются Red–ox превращениям; o – вещества, которые проникают в пленку и поддаются Red–ox превращениям и дают сигнал, но не на "аналитической" длине волны; ► – вещества, которые проникают в пленку и поддаются Red–ox превращениям, продукты которых дают сигнал на "аналитической" длине волны).

На правую боковую стенку волновода нанесена тонкая пленка оксида индия (ITO), которая представляет собой оптически прозрачную поверхность. На нее наноситься тонкая мешка ионселективной пленки, которая обладает химической выборочностью. Свет, который проходит по оптическому волноводу в каждой точке, где происходит отражение, вызывает исчезающе слабое поле, которое проникает в пленку. Взаимодействие этого поля с анализируемым веществом в пленке приводе к затуханию света, который проходит по волноводу. Оно связано с концентрацией анализируемого вещества в пленке, которая выполняет две важных функции:

1 - она предварительно концентрирует анализируемое вещество вблизи поверхности электрода, и может быть определена спектроэлектрохимически в режиме нарушенного полного внутреннего отражения;

2 - она способствует устранению препятствий со стороны других веществ, поскольку слабое поле проникает на такую малую глубину, что оптический "пробник" касается только того вещества, которое находится в середине пленки. На практике анализируемое вещество, распределенное в пленке, можно зарегистрировать лишь в случае если оно вступает в Red–ox реакцию на поверхности электрода, что приводит к поглощению света на "аналитической длине волны". Его модулируют путем электрохимического циклирования между поглощающими и не поглощающими состояниями вещества. Рассмотрим работу ферментативного биосенсора [5]. На рисунке 2 показана схема генерации сигнала при ферментативном катализе, который используется для регистрации микробиологического субстрата.

Рисунок 2. Схема генерации сигнала в амперометрическом ферментативном электроде, где Ф - фермент, М - медиатор, С - субстрат, П - продукт.

Фермент состоит из одной или больше пептидных цепей, которые образуют третичную структуру, стабилизированную электростатическими взаимодействиями, водородной связью и дисульфидными мостиками. Его каталитическая активность связана с активным центром, где идет реакция. Она специфическая в силу уникальной пространственной конфигурации и заряда этого центра. Ферменты реагируют с субстратом по следующей схеме:

E + S ES P + E, (1)

где: Е - фермент, S - субстрат фермента и Р - продукт ферментативной реакции. Кинетика этого процесса детально проанализирована Михаелисом - Ментеи [6]. Скорость образования или исчезновения продукта описывается следующим уравнением:

–(dS/dP) = (dP/dt) = (ks[E][S])/([(k2 + k3)/k1] + [S]) = (Vmax[S])/(Km + [S]), (2)

где: Vmax – максимальная скорость ферментативной реакции, Km – константа Михаелиса. При инверсии уравнения (2) оно позволяет получить зависимость Ханеса:

(1/V) = (Km/Vmax[S]) + (1/Vmax). (3)

Эти уравнения позволяют определить концентрацию количества субстрата, или количества фермента, которые участвуют в каталитической реакции.

В ферментативных амперометрических биосенсорах обычно измеряется скорость поглощения кислорода или разряда ферментативной реакции, которая нарабатывается в ходе реакций:

Страницы: 1 2

Смотрите также

Определение электропроводности лизина
...

Разработка энергосберегающей схемы разделения трехкомпонентной азеотропной смеси бензол–циклогексан-гексан методом экстрактивной ректификации с сульфоланом
...

Введение.
Судя по последним публикациям, нынче довольно трудно отметить те стороны жизни, где бы не находили применение редкоземельные элементы. Эти металлы и их сплавы обычно извлекаются из хлоридных и фтор ...