Трансформация или разрушение комплексных соединений
Дипломы, курсовые и прочее / Комплексные соединения в аналитической химии / Дипломы, курсовые и прочее / Комплексные соединения в аналитической химии / Трансформация или разрушение комплексных соединений Трансформация или разрушение комплексных соединений

Трансформация или разрушение комплексного соединения происходит в тех случаях, когда компоненты его внутренней сферы, вступая во взаимодействие с добавленным реагентом, связываются или трансформируются вследствие образования: а) более устойчивого комплекса; б) малодиссоциирующего соединения; в) малорастворимого соединения; г) окислительно-восстановительных превращений. Проиллюстрируем эти положения на примерах.

А. Трансформация комплекса с образованием более устойчивого комплекса в результате:

- более прочного связывания лигандов с новым комплексообразователем, т. е. реакции обмена комплексообразователя:

[Сu(NН3)4]S04 + 2Н2SО4 à СиSО4 + 2[NН4]2SО4

([Сu(NН3)4]2+ 4Н+ à Сu2+ + [NН4]+)

- более прочного связывания комплексообразователя с новым лигандом, т. е. реакции обмена лигандами во внутренней сфере:

[Pt(NH3)4Cl2] + 4КСN à К2[Рt(СN)4] + 4NН3 + 2КСl

([Pt(NH3)4Cl2]+ 4СN- à [Рt(СN)4]2-+ 4NH3)

Замена лигандов во внутренней сфере комплексного соединения протекает ступенчато, причем при наличии различных лигандов вначале замещается тот лиганд, связь которого с комплексообразователем лабильна:

[Рt(NН3)2С12] + КI à [Рt(NН3)2ClI] + КС1

([Рt(NН3)2С12] + I- à [Рt(NН3)2СlI] + Сl-)

Рассмотренные реакции трансформации комплексных соединений всегда протекают в сторону образования более устойчивых комплексных соединений, у которых константа нестойкости внутренней сферы меньше, чем у исходных соединений.

Б. Разрушение гидроксокомплексов в кислой среде из-за образования малодиссоциированного соединения

Nа2[Zn(ОН)4] + 4НС1 à 2NaCl + ZnCl2 + 4Н2O

([Zn(ОН)4]- + 4Н+ à Zn2+ + 4Н20)

В. Разрушение комплексного соединения с образованием малорастворимого соединения, в котором комплексообразователь или лиганд связан прочнее, чем в комплексе:

[Ag(NH3)2]Cl + KI àAgI + 2КСl + 2NН3

([Ag(NH3)2]+ + I- à AgI + 2NH3)

Г. Разрушение или трансформация комплексного соединения в результате окислительно-восстановительных превращений:

- лиганда:

K2[CdI4] + Cl2 à 2КСl + СdС12 + 2I2

([CdI4]2- + Cl2 à Сd2+ + 2I2 + 4Сl-)

- комплексообразователя:

2К4[Fе(СN)6] + С12 à 2К3[Fе(СN)6] + 2КС1

(2[Fе (СN)6]4- + С12 à 2[Fе(СN)6] + 2Сl- )

Процесс комплексообразования сильно влияет на величины восстановительных потенциалов катионов d-металлов. Если восстановленная форма катиона металла образует с данным лигандом более устойчивый комплекс, чем его окисленная форма, то потенциал возрастает. Снижение потенциала происходит, когда более устойчивый комплекс образует окисленная форма. Иллюстрацией сказанному являются следующие данные.

Fe3+ + e- ßà Fe2+

φ0’ = 0,35 B

Эти особенности окислительно-восстановительных свойств ионов "металлов жизни" в биокомплексах очень важны для понимания биохимических процессов, протекающих при их участии.

Смотрите также

Синтез Na2O2 (пероксида натрия)
В повседневной жизни пероксиды очень важны для человека. Пероксид водорода, например, широко используется для отбеливания тканей и шерсти, соломы, перьев. Разлагая красящие вещества (пигмен ...

Исследование концентрирования Cu (II) на анионите АВ-17, иммобилизованном 8-оксихинолином
Количественное определение следовых тяжелых металлов в объектах окружающей среды (природных и сточных водах и т.п.) вызывает у экологов, химиков-аналитиков определенные затруднения. Это объяс ...

Физико-химические свойства меди и железа
...