Флуориметрические детекторы
Страница 1

Детектирование по флуоресценции применяют в биологии, медицине, форма-кологии, при анализе пищевых продуктов и контроле загрязнения окружающей среды. Флуоресцентными свойствами, т.е. способностью излучать свет (в видимой области спектра) под действием ультрафиолетового излучения, обладают многие биологически-активные вещества: лекарства, витамины, стероиды. Красители, соединения с сопряженными связями, в том числе полиядерные ароматические углеводороды, также можно определять с помощью флуориметрического удетектора, при этом чувствительность определения велика.

Интенсивность флуоресцентного излучения зависит от интенсивности возбуждающего излучения и квантового выхода процесса возбуждения. Поэтому для повышения чувствительности метода следует использовать достаточно мощные источники света, например газоразрядные лампы или лазеры. Применение лазеров позволяет детектировать количество вещества на уровне 10-12 г. Метод двухфотонного лазерного возбуждения отдает возможность использовать лазер с более низкой энергией, например, аргоновый. Для внедрения в практику такого метода необходимо иметь достаточно широкий спектр лазеров, перестраиваемых по длинам волн. Чувствительность детекторов по флуоресценции для некоторых соединений оказывается на несколько порядков выше чувствительности детекторов по поглощению, поскольку отсчет удается вести фактически от интенсивности регистриpyeмогo излучения, близкой к нулю, на которую не накладывается возбуждающее излучение.

Разработаны детекторы, которые могут одновременно работать и как спектрофотометры и как флуориметры. Детекторы с монохроматорами, позволяющими выбрать необходимые длины волн для возбуждающего и флуоресцентного излучения, обеспечивают высокую чувствительность и селективность, однако они оказываются значительно более дорогими, чем флуориметры с постоянной спектральной полосой. Одним из надежных флуориметров является детектор «Кратос».

В качестве причин уменьшения чувствительности детекторов следует указать на поглощение излучения при высокой концентрации вещества в ячейке, а также на потерю излучения за счет отражения от окошек ячейки. Поэтому при работе с флуориметром следует использовать достаточно разбавленные растворы, кроме того, возможно применение детекторов без окошек, например с Не—Cd-лазером.

Некоторые нефлуоресцирующие соединения разделяют в виде производных с флуорогенными веществами. Производные получают до хроматографического разделения или после, вводя реагент в Т-образное устройство между колонкой и детектором. Амины и фенолы образуют диазильные производные при взаимодействии с 5-диметил-амино-1-нафтилсульфохлоридом до разделения, а аминокислоты после разделения обрабатывают флуорескамином.

Флуориметр применяют при анализе микропримесей, когда мала концентрация растворенного вещества, подлежащего обнаружению. Хотя динамический диапазон флуориметра достаточно большой (104), его линейный динамический диапазон может быть ограничен для некоторых растворенных веществ относительно узким интервалом концентраций (10-кратным). Для количественного анализа его следует проверять в интересующем интервале концентраций.

Перед количественным измерением необходимо убедиться в отсутствие фоновой флуоресценции, эффектов гашения и проверить отклик детектора на реальный образец.

Страницы: 1 2

Смотрите также

Флотационный метод получения хлористого калия из сильвинита
Разработка и применение различных методов обогащения калийных и полиметаллических руд неразрывно связаны с минеральным составом исходной руды. Выделить ценные компоненты из руд в богатый ...

Синтез бензальанилина
Цель работы: провести литературный обзор по аминам. Синтезировать бензальанилин. Амины – производные аммиака, в которых  атомы водорода замещены углеводородными группами. Атом азота в ам ...

Получение биогаза
В мировой практике газоснабжения накоплен достаточный опыт использования возобновляемых источников энергии, в том числе энергии биомассы. Наиболее перспективным газообразным топливом являетс ...