Получение медного купороса сульфатизирующим обжигом белого матта
Дипломы, курсовые и прочее / Изучение и анализ производства медного купороса / Дипломы, курсовые и прочее / Изучение и анализ производства медного купороса / Получение медного купороса сульфатизирующим обжигом белого матта Получение медного купороса сульфатизирующим обжигом белого матта
Страница 1

Существенным недостатком способа получения медного купороса из белого матта путем его окислительного обжига и последующего растворения полученной окиси меди в серной кислоте является то, что основное количество серы, содержащейся в белом матте, не используется. Между тем за счет этой серы теоретически возможно было бы перевести в медный купорос 50 % меди, находящейся в белом матте, и тем самым снизить в 2 раза расход серной кислоты при последующей обработке продукта обжига. С этой целью белый матт должен подвергаться не простому окислительному, а сульфатизирующему обжигу, то есть длительной прокалке при сравнительно невысоких температурах (400 – 5000С) при достаточном избытке кислорода. В этих условиях реакции:

2 SO2 + O2 ↔ 2 (25)

СuO + SO3 ↔ CuSO4 (26)

смещены направо и 60 – 70 % сульфидной серы переходят в сульфатную, что соответствует превращению 30 – 35 % меди в сульфат меди. Для обработки продукта обжига расходуется в 1,5 раза меньше серной кислоты, чем при простом окислительном (не сульфатирующем) обжиге, а общее использование меди достигает 90 %.

Механизм образования сульфата меди при сульфатирующем окислении белого матта можно представить следующими элементарными реакциями. Часть сульфида непосредственно окисляется в сульфат:

Cu2S + 2,5 O2 = CuSO4 + СuO (27)

Наряду с этим происходит окисление сульфида меди с образованием двуокиси серы и окиси меди:

Cu2S + 1,5 O2 = Cu2О + SO2 (28)

Cu2О + 0,5 O2 ↔ 2 СuO (29)

Окись меди далее реагирует с серным ангидридом, образующимся при каталитическом окислении SO2 в присутствии содержащейся в белом матте окиси железа, частично сульфатизируется по реакциям:

СuO + SO2 = CuSO3 (30)

4 CuSO3 = 3 CuSO4 + CuS (31)

с последующим окислением образующегося CuS. Для успешной сульфатизации белого матта необходимо обеспечить достаточно высокую концентрацию кислорода в газовой фазе. Этого можно достигнуть или использованием обогащенного кислородом воздуха, или применением добавок, обогащающих высоким равновесным давлением кислорода в температурных условиях обжига.

Степень перехода серы в газовую фазу в виде двуокиси серы значительно возрастает при добавке окиси меди. Степень окисления сульфида меди при 4500С в течение 60 минут в отсутствие добавки составляет 29,5 %. С увеличением температуры выше 4500С в этих условиях степень перехода сульфидной серы в сульфатную резко падает и при 750 – 8000С практически равна нулю. В присутствии добавок окиси меди увеличивается степень перехода сульфидной серы в сульфатную, а температура, отвечающая максимуму сульфатообразования, сдвигается в сторону более высоких температур. При добавке 25 % СuO в интервале 500–5500С за 60 минут 35 – 40 % сульфидной серы переходит в сульфатную, а общее количество окислившейся серы достигает 90 – 95 %.

Наиболее интенсивно сульфатизирующий обжиг сульфидов и окислов меди идет в кипящем слое, особенно при предварительном мелком измельчении материала.

Изучена сульфатизация Cu2S крепкой серной кислотой. До 3000С она идет по реакциям:

Cu2S + 2 H2SO4 = CuS + CuSO4 + SO2 + 2 H2O (32)

CuS + 2 H2SO4 = CuSO4 + SO2 + 2 H2O (33)

S + 2 H2SO4 = 3 SO2 + 2 H2O (34)

Наибольший выход CuSO4 достигается при 2000С. При высоких температурах частично улетучивается серная кислота и в результате взаимодействия Cu SO4 с Cu2S образуется Cu2SО4, а затем Cu2О.

Изучены условия превращения Cu2S в CuSO4 путем автоклавного выщелачивания белого матта слабой серной кислотой в присутствии кислорода. При этом паралельно идут следующие реакции:

Cu2S + 0,5 O2 + H2SO4 = 2 CuSO4 + H2O (35)

Cu2S + O2 + 2 H2SO4 = 2 CuSO4 + S + 2 H2O (36)

Скорость растворения Cu2S пропорциональна давлению кислорода в степени 0,5. Для преимущественного (на 93 %) осуществления процесса по реакции (35), то есть с полным использованием серы и с меньшим расходом серной кислоты, оптимальными условиями являются: давление кислорода ~ 4 ат, концентрация серной кислоты 0,01 моль/л, температура 1400С.

Страницы: 1 2

Смотрите также

Гомогенное химическое равновесие
1.      Рассчитайте сродство (-ΔrGt) железа к кислороду воздуха, Po2=2,0266*104Па при 1000К, если константа равновесия реакции 2Fe+ O2  2FeO при этой температуре равна 2,450*1020 Па-1 ...

Химические свойства и область применения полиэтилентерефталата
Полиэтилентерефталат (ПЭТФ, ПЭТ)- термопластик, наиболее распространённый представитель класса полиэфиров, известен под разными фирменными названиями: полиэфир, лавсан или полиэстер. Пла ...

Разработка технологии полимеризационного наполнения ПКА дисперсными наполнителями
В настоящее время рынок потребления высоконаполненных композиционных магнитотвёрдых материалов, к которым относятся так называемые магнитопласты, является одним из самых динамичных в промыш ...