Растворение меди в серной кислоте (натравка)

При взаимодействии гранул меди с разбавленным раствором серной кислоты, содержащим также сульфат меди, в присутствии воздуха, кислород воздуха растворяется в кислоте, диффундирует к поверхности меди и окисляет ее до закиси меди:

4 Cu + O2 = 2 Cu2O (6)

Закись меди растворяется в серной кислоте:

Cu2O + H2SO4 = Cu2SO4 + H2O (7)

Образующийся сульфат закиси меди легко окисляется в сульфат окиси меди:

2 Cu2SO4 + 2 Cu2SO4 + O2 = 4 CuSO4 + 2 (8)

Общая скорость процесса лимитируется наиболее медленной его стадией – окислением меди до закиси меди. Это объясняется малой растворимостью кислорода и медленной его диффузией к поверхности гранул меди. Процесс значительно ускоряется, когда в растворе уже присутствует медный купорос.

Повышение температуры, как и в других случаях, ускоряет химические реакции, но вызывает уменьшение растворимости кислорода, что замедляет окисление. Поэтому в натравочной башне поддерживают температуру не выше 80–850С. При этом на окисление меди используется приблизительно ¼ кислорода, поступающего в башню с воздухом, расход которого составляет около 1000 нм3 на 1 тонну медного купороса.

Растворимость кислорода уменьшается с ростом концентрации CuSO4 в растворе. Поэтому при повышении концентрации CuSO4 скорость растворения меди сначала увеличивается за счет каталитического действия CuSO4, а затем уменьшается вследствие недостатка кислорода. Максимум скорости растворения наблюдается при концентрации 120 г./л CuSO4 (для раствора, содержащего ~ 110 г./л H2SO4). Но даже при содержании в растворе 300 г./л CuSO4 скорость растворения меди в 1,6 раза больше, чем в отсутствие медного купороса. С увеличением концентрации серной кислоты растворимость кислорода в ней уменьшается, но усиливаются ее окислительные свойства. Поэтому повышение кислотности раствора вызывает не очень большое уменьшение скорости растворения меди – всего на 10 % при повышении концентрации H2SO4 с 2,5 до 20 %. Растворение меди значительно ускоряется в присутствии в растворе ионов железа вследствие деполяризации

4 Fe2+ + O2 + 4 H+ = 4 Fe3+ + 2 H2O (9)

2 Cu + 4Fe3+ = 2 Cu2+ + 4 Fe2+ (10)

Ионы Fe2+ вновь окисляются в Fe3+ и служат, таким образом, катализатором процесса. Доля растворяющейся меди под действием ионов Fe3+ в растворе, содержащем ~110 г./л H2SO4, 60 г./л CuSO4 и 20 – 22 г./л FeSO4, составляет около 60 % от всего количества меди, перешедшей в раствор.

Ионы железа попадают в циркулирующий при растворении меди раствор с серной кислотой и вследствие растворения оставшихся в меди примесей. Содержание сульфатов железа в растворе непрерывно возрастает и достигает иногда

70 г./л и более. Вследствие этого при кристаллизации медного купороса выделяется также и сульфат железа, загрязняющий продукт. Поэтому, когда концентрация железа в растворе становится столь большой, что создается опасность получения нестандартного по содержанию железа медного купороса, раствор полностью выводят из обращения.

Существенным является обеспечение равномерного орошения (смачивания) гранул меди раствором. В местах, плохо орошаемых кислотой, образовавшаяся окисная пленка растворяется не полностью, вследствие малой своей растворимости кристаллизуется из раствора и цементирует при этом гранулы и шлам.

Смотрите также

Характеристика кобальта
Кобальт (лат. Cobaltum), Со, Название металла произошло от немецкого Kobold - домовой, гном. Соединения кобальта были известны и применялись в глубокой древности. Сохранился египетский с ...

Происхождение Кадмия
...

Разнообразие систем, формируемых дифильными веществами
...