Теория кристаллического поля
Страница 2

Параметр расщепления Δ зависит от размеров центрального иона, его заряда, электронной конфигурации и от природы лиганда. Экспериментально его определяют по спектрам поглощения комплексных соединений. Возбуждение электрона с нижнего уровня на верхний сопровождается поглощением энергии и появлением в спектре полосы, максимум которой соответствует энергии расщепления Δ. Значение Δ обычно выражают в волновых числах ν = 1/λ см–1. Большинство значений Δ лежит в пределах о 10000 до 30000 см–1. (1 см–1 соответствует энергии E = hνc = 6,26∙10–34∙3∙1010∙1 = 2,0∙10–23 Дж = 11,96 Дж∙моль–1 = 1,25∙10–4 эВ) В ряду 3d-, 4d-, 5d-элементов при прочих равных условиях Δ увеличивается от периода к периоду на 30–35 %. Например, для [Co(NH3)6]3+ Δ = 23000 см–1, для [Rh(NH3)6]3+ Δ = 34000 см–1, для [Ir(NH3)6]3+ Δ = 41000 см–1. Величина Δ возрастает при переходе от комплексов двухрядных ионов 3d-элементов к трехрядным. Так для [Fe(H2O)6]2+ и [Fe(H2O)6]3+ значения Δ равны соответственно 10400 см–1 и 13700 см–1. Из спектроскопических измерений была найдена последовательность расположения лигандов по возрастанию их влияния на величину расщепления Δ, называемая спектрохимическим рядом лигандов [2]:

I- < Br- < SCN- « Cl- < F- < OH- « ONO- < C2O42- < OH2 < NCS- < ЭДТА4- < Py « NH3 < En < NO2- < ДМГ < CN- < CO.

Некоторые лиганды (роданид, нитрит) имеют два варианта присоединения и потому два места в ряду.

В октаэдрических комплексах, образуемых ионами с электронными конфигурациями d4, d5, d6, d7, возможно различное размещение электронов – либо высоко-, либо низкоспиновое в зависимости от параметра расщепления Δ и энергии спаривания P. Последняя определяется как разность энергий межэлектронного взаимодействия низкоспиновой (НС) и высокоспиновой (ВС) конфигураций, деленная на число спаривающихся электронов, и приводится в справочниках. Очевидно, что низкоспиновое состояние реализуется тогда, когда P < Δ, а высокоспиновое – когда P > Δ. Сведения о некоторых свойствах комплексов d-элементов представлены в таблице 1[1].

Таблица 1.

Электронная конфигурация координ. иона

Ион-комплексообразователь

P, см–1

Лиганды

Δ, см–1

Электр. конфигурация октаэдр. иона

Спиновое состояние

d4

Cr2+

23500

H2O

13900

BC

Mn3+

28000

H2O

21000

BC

d5

Mn2+

25200

H2O

7800

BC

Fe3+

30000

H2O

13700

BC

d6

Fe2+

17700

H2O

10400

BC

17700

CN–

33000

HC

Co3+

21000

F–

1300

BC

21000

NH3

23000

HC

d7

Co2+

22500

H2O

10100

BC

Страницы: 1 2 3 4

Смотрите также

Ароматические соединения с конденсированными ядрами
Два ароматических кольца, имеющих два общих углеродных атома называются конденсированными. Простейший представитель ароматических соединений с двумя конденсированными ядрами - нафталин. Существуют ...

Исследование некоторых физико-химических свойств протеиназы Penicillium wortmannii
...

Белки молока, строение и функции
В жизни человека наиболее важную роль играет питание. Оно определяет и физическое состояние, а также физическое и умственное развитие, повышает иммунитет и т. д. Молока считается наиболее ...