Электрохимические методы

К наиболее применимым электрохимическим методам анализа относятся потенциометрический, полярографический и кондуктометрический. Потенциометрический метод базируется на измерении электродных потенциалов, которые зависят от активности ионов, а в разбавленных растворах - от концентрации ионов. Потенциалы металлических электродов определяются уравнением Нернста

;

Соответственно по значению потенциала можно судить о концентрации ионов. Измерительная ячейка состоит из измерительного (индикаторного) электрода и электрода сравнения, который не чувствителен к определяемому веществу.

Полярографический метод предложен чешским ученым Я. Гейеровским в 1922 г. В этом методе строят кривые напряжение-ток для ячейки, у которой два, обычно ртутных, электрода. Один электрод капающий, второй электрод неподвижный с большой площадью поверхности. В ячейку заливается анализируемый раствор. При прохождении тока анализируемый ион осаждается на капле ртути и растворяется в этой капле:

Мn+ + nе + Hg = M (Hg)

Напряжение ячейки определяется прежде всего потенциалом капающего электрода, на котором возникает значительная концентрационная поляризация, так как он имеет небольшую площадь поверхности и соответственно высокую плотность тока. Восстановление его ионов протекает в режиме предельного тока, которое для капающего электрода имеет выражение:

Inv = K1D1/2m2/3t1/6c = K2c,

где К\ и К2 - константы; D - коэффициент диффузии; т - масса капли ртути; t - время образования капли; с - концентрация анализируемого металла в растворе.

Потенциал ртутного электрода определяется природой разряжающихся ионов и током, зависящим от концентрации ионов:

,

где Е1/2 - потенциал полуволны, определяемый природой ионов; I – ток, Iпр - предельный ток Если в растворе присутствует один разряжающийся ион, то полярографическая кривая (полярограмма) имеет одну волну, при наличии нескольких ионов - несколько волн (рис. .1).

Рис.1. Полярограмма раствора, содержащего несколько катионов.

По значению потенциала полуволны определяется вид ионов, а по величине предельного тока - их концентрация. Таким образом полярографический метод позволяет определять концентрацию нескольких ионов в растворе.

Кондуктометрия. Электрическая проводимость разбавленных растворов пропорциональна концентрации электролитов. Поэтому, определив электрическую проводимость и сравнив полученное значение со значением на калибровочном графике, можно найти концентрацию электролита в растворе. Методом кондуктометрии, например, определяют общее содержание примесей в воде высокой чистоты.

Хроматографический анализ. Анализ основан на хроматографии, позволяющей разделять двух- и многокомпонентные смеси газов, жидкостей и растворенных веществ методами сорбции в динамических условиях. Анализ производится с помощью специальных приборов - хроматографов. Разработано несколько методов анализа, которые классифицируются по механизму процесса и природе частиц (молекулярная, ионообменная, осадительная, распределительная хроматография) и по формам применения (колоночная, капиллярная, тонкослойная и бумажная). Молекулярная хроматография основана на различной адсорбируемости молекул на адсорбентах, ионообменная хроматография - на различной способности к обмену ионов раствора. В осадительной хроматографии используется различная растворимость осадков, образуемых компонентами анализируемой смеси при взаимодействии с реактивами, нанесенными на носитель. Распределительная хроматография базируется на различном распределении веществ между двумя несмешивающимися жидкостями. Молекулярная (жидкостная адсорбционная), ионообменная и осадительная хроматография обычно проводятся в хроматографических колонках соответственно с адсорбентом, ионообменным материалом или инертным носителем с реагентом. Распределительная хроматография, как правило, выполняется на бумаге или в тонком слое адсорбента. К достоинствам хроматографического метода анализа относятся быстрота и надежность, возможность определения нескольких компонентов смеси.

Смотрите также

Технология получения и свойства мочевино-формальдегидных смол
Первые продукты конденсации мочевины с формальдегидом (карбамидные смолы) были получены еще в 1896 г., но производство мочевино-альдегидных смол налажено лишь в 1920—1921 гг. Мочевино-фо ...

Cульфоксидный комплекс гидрохинона как фотоинициатор полимеризации метилметакрилата
Рассматривается поведение сульфоксидного комплекса гидрохинона в радикальной полимеризации метилметакрилата. Показано, что в отличии от гидрохинона такой комплекс участвует в фотоинициирова ...

Разработка энергосберегающей схемы разделения трехкомпонентной азеотропной смеси бензол–циклогексан-гексан методом экстрактивной ректификации с сульфоланом
...