керамика
Страница 1

Керамика на основе фосфата кальция может быть изготовлена с применением различных технологий, выбор которых зависит от требований к микроструктуре и свойствам материала. Для имплантатов, несущих механическую нагрузку, целесообразно использовать плотно спеченную керамику, обладающую большей прочностью по сравнению с пористой керамикой. Микроструктура такой керамики должна быть тонкодисперсной, поскольку прочность возрастает с уменьшением размера зерна согласно известной зависимости Холла-Петча [216]:

s = s0 + bd-1/2, (58)

где s0 и b – постоянные, d – размер зерна.

Плотная керамика может быть получена прессованием или шликерным литьем с последующим спеканием без приложения давления, горячим одноосным или изостатическим прессованием [217-219]. Могут быть использованы другие методы формования, применяемые в керамической технологии. Для интенсификации процесса уплотнения могут быть использованы активирующие спекание добавки, в частности формирующие жидкую фазу в процессе спекания [184] или проводят спекание в различных атмосферах (с различным парциальным давлением паров воды, с различным парциальным давлением СО2 [21]). При этом плотность керамики стремятся довести до теоретически рассчитанного значения, составляющего 3,156 г/см3.

Для плотной керамики общепринятыми являются такие характеристики, как прочность при изгибе и растяжении, трещиностойкость. Предел прочности при изгибе, сжатии и растяжении ГА-керамики находится в диапазоне 38 - 250, 120 - 150 и 38-300 МПа [21,220], соответственно. Разброс данных вызван статистическим характером распределения прочности, влиянием остаточной микропористости, размером зерна, примесями и т.д. С увеличением отношения Ca/P, прочность увеличивается, достигая пиковой величины около Са/P=1,67, и резко уменьшаясь при Ca/P>1,67 [21].

Модуль функции Вейбулла статистического распределения прочности плотной керамики находится между 5 и 18, это означает, что она ведет себя как типичный хрупкий материал.

Важной характеристикой керамики является ее устойчивость к замедленному разрушению в коррозионно-активных средах. Под действием таких сред и механических напряжений в керамике происходит подрастание существующих микроструктурных дефектов. Скорость этого процесса, V = AKn (А – постоянная, К – коэффициент интенсивности приложенных напряжений), зависит от величины показателя степени n. Чем больше значение n, тем выше устойчивость материала к замедленному разрушению. Для определения значения n может быть использован метод динамической усталости, заключающийся в нахождении зависимости прочности от скорости деформирования образца [24]. Коэффициент n может изменятся в широких пределах, например от 26 до 80 при испытаниях в сухих условиях (по сравнению с n=30 для керамики из оксида алюминия). Однако, он снижается до величины 12-49 во влажной среде, показывая высокую чувствительность ГА-керамики к замедленному росту трещины [21].

Модуль Юнга плотной керамики находится на уровне 35 - 120 ГПа [21]. Его величина зависит от остаточной пористости и присутствия примесей. Модуль Юнга, измеряемый при изгибе, равен 44 - 88 ГПа. Твёрдость по Виккерсу плотной керамики равна 3 - 7 ГПа. Плотная ГА-керамика проявляет сверхрпластичность при температуре от 1000 до 1100 оС, с механизмом деформации, основанном на проскальзывании по границам зёрен. Сопротивление износу и коэффициент трения плотной ГА-керамики сравнимы с таковым у зубной эмали. Значения трещиностойкости (К1с) находится на уровне 0,8 – 1,2 МПа´м1/2 причём она уменьшается почти линейно с увеличением пористости. Удельная работа разрушения составляет от 2,3 до 20,0 Дж/м2.

Низкие значения трещиностойкости К1с и модуля Вейбулла вместе с высокой восприимчивостью к замедленному росту трещины указывают на низкую надёжность изделий из плотной ГА-керамики.

Нами проведены сравнительные исследования влияния среды на замедленное разрушение и прочность ГА- и ФГА-керамики. На рис. 46а. показаны графики динамической усталости для ГА-керамики, на рис. 46б. – аналогичные данные для ФГА-керамики, образцы которых были испытаны в различных средах. Как можно видеть, прочность керамики снижается с уменьшением скорости деформирования, что обусловлено увеличением времени пребывания образца материала под нагрузкой в коррозионно-активной среде, приводящим к субкритическому подрастанию трещины в процессе нагружения до критического ее размера lc. Этот размер соответствует критерию Гриффитса (59) для перехода трещины к самопроизвольному, неконтролируемому распространению [221]:

Страницы: 1 2 3 4 5 6

Смотрите также

Получение хлора методом электролиза повареной соли
Быстрое развитие хлорной промышленности связано в основном с расширением производства хлорорганических продуктов – винилхлоридов, хлорорганических растворителей, инсектицидов и др. Хотя дол ...

Рефрактометрический метод анализа в химии
Рефрактометрический метод имеет многолетнюю историю применения в химии. Рефрактометрия (от латинского refraktus – преломлённый и греческого metréō – мерю, измеряю) – это разд ...

Азот
Происходит от греческого слова azoos - безжизненный, по-латыни Nitrogenium. Химический знак элемента - N. Азот - химический элемент V группы периодической системы Менделеева, порядковый номер ...