Важнейшими соединениями йода являются йодистый водород, йодиды, соединения положительно одновалентного йода, йодаты и йодорганические соединения. Йодистый водород - газ с резким раздражающим запахом. Один объем воды при комнатной температуре растворяет более 1000 объемов йодистого водорода, при этом происходит выделение энергии. Водный раствор йодистого водорода – йодистоводородная кислота - является очень сильной кислотой. Растворы йодистоводородной кислоты и йодид-ион в кислой среде проявляют восстановительные свойства. Нормальный окислительно-восстановительный потенциал системы «йод - йодид-ион» равен +0,54 В, то есть йодид-ион в кислой среде является более сильным восстановителем, чем ион двухвалентного железа. Йодид-ион взаимодействует с ионом двухвалентной меди с образованием нерастворимого в воде йодида одновалентной меди и выделением молекулярного йода. Таким образом, в кислой среде невозможно одновременное существование йодид-ионов и ионов трехвалентного железа, соединений трех- и четырехвалентного марганца, ионов двухвалентной меди. С другой стороны, молекулярный йод окисляет сероводород и сульфид-ион при любом значении рН, образуя при этом йодид-ион. Окислительно-восстановительные свойства йода определяют формы нахождения элемента в различных природных системах. В сильнокислых почвах с господством окислительной обстановки накопление йодидов невозможно, тогда как в анаэробных условиях, создающихся, в частности, в глеевых горизонтах почв, эта форма микроэлемента является устойчивой.
В нейтральной среде йодиды более устойчивы, чем в кислой, хотя и в этих условиях растворы йодидов медленно окисляются кислородом воздуха с выделением молекулярного йода. В щелочной среде устойчивость йодидов возрастает.
Растворимость йодидов возрастает в ряду йодид ртути, йодид золота, йодид серебра, йодид одновалентной меди, йодид свинца. Остальные йодиды металлических катионов и аммония хорошо растворимы в воде.
Наибольшей реакционной способностью и физиологической активностью обладают соединения положительно одновалентного йода. Вследствие своей неустойчивости и реакционной способности они встречаются в биосфере в низких концентрациях. Как было отмечено раньше, однозарядный положительный катион йода может быть получен специальными методами в лаборатории, но в естественных условиях он крайне неустойчив. В природе соединения положительно поляризованного одновалентного йода находятся в других формах.
Окись одновалентного йода не существует. Содержащая йод в степени окисления +1 йодноватистая кислота является очень неустойчивым соединением. Ее разбавленный раствор получают при встряхивании водного раствора йода с окисью ртути. В кислой среде йодноватистая кислота является сильным окислителем, в щелочной среде при рН выше 9 гипойодит-ион взаимодействует с водой с образованием йодид-иона и йодат-иона.
Молекулярный йод, в отличие от кислорода и азота, не является неполярным веществом. Измерения дипольного момента молекулярного йода в свободном состоянии и в растворах дают величины от 0,6 до 1,5 D, что указывает на значительное разделение зарядов в молекуле. В биосфере невозможно изолированное существование молекулярного йода. Везде, в любых средах биосферы молекулы йода будут сталкиваться с поляризующими веществами, из которых наибольшее значение имеет вода.
По классическим представлениям при растворении молекулярного йода в воде устанавливается равновесие:
I2 + H2O=I + HOI.
Равновесие сильно смещено влево. Образующаяся йодноватистая кислота может взаимодействовать с водой как амфотерное соединение. Исследования В.О. Мохнача и сотрудников [Мохнач, 1968] показали, что в растворах молекулярного йода не обнаруживается йодид-ион. Ультрафиолетовые спектры поглощения системы «молекулярный йод-вода» обнаруживают максимумы поглощения в диапазонах 288 - 290 нм, 350 - 354 нм и около 460 нм. Первая полоса - поглощение трийодид-иона, вторая соответствует аниону IO- , третья - поляризованной гидратированной молекуле йода. Отсутствие поглощения в диапазоне 224 - 226 нм свидетельствует об отсутствии йодид-ионов в растворе. По мнению автора, в растворах молекулярного йода устанавливается равновесие 2I2 + Н2О =2Н+ + I3 +IO-. Анион йодноватистой кислоты является причиной сильной окислительной и физиологической активности растворов молекулярного йода.
Коагулирование примесей воды
...
Способы восстановления оксидов азота
Основными источниками загрязнения атмосферного воздуха
являются промышленные предприятия, транспорт, тепловые электростанции,
животноводческие комплексы. Каждый из этих источников связан с в ...
Исследование совместного электровосстановление гадолиния и криолита в галогенидных расплавах
...