Основные выводы
Страница 2

4. Установлено, что увеличение скорости образования твердого раствора LiAI, скоростей роста и количества зародышей ИМС LiAl в ряду ДМФ«ПК<ПК+ДМЭ<АН обусловлено особенностями структуры и физико-химических свойств растворителей, различием во взаимодействии с компонентами раствора и материалами электродов. Хемосорбционное взаимодействие молекул растворителя с поверхностью алюминия приводит к изменению структуры двойного электрического слоя, энергетического состояния, потока заряда на границе металл-электролит, что влияет на скорость образования вакантных мест и возникновение дислокаций в поверхностной кристаллической решетке алюминия и соответственно на процессы внедрения лития в А1 основу. С другой стороны, особенности строения и физико-химические свойства растворителей (наличие трехцентровой связи =N-C-0 в молекуле ДМФ, рост донорного числа, сольватирующей способности Li - S и размера сольватокомплексов в ряду ДМФ» ПК>АН) влияют на активность лития в растворе электролита у поверхности электрода, которая, в соответствии с теорией ЭХВ, определяет активность и количество внедряющегося металла (лития) в структуре ИМС. Процессы десольватации лития, химически связывающегося с металлом катода (А1, А1(Ме)), и диффузия его в глубь кристаллической решетки при формировании твердого раствора и (или) интерметаллида LiAl протекают более эффективно из растворов на основе ацетонитрила и смеси ПК+ДМЭ. Seo раскрутка сайта заказать продвижение саи тов заказать www.leadtheway.ru.

5. Показано, что независимо от природы апротонного растворителя, природы третьего компонента и других факторов, лимитирующей стадией процесса катодного внедрения, как на стадий образования твердого раствора (ТР), так и при формировании ИМС LiAl, является диффузия лития в решетке А1 и сплавов А1(Ме). На это указывает то, что величины энергии активации процессов близки и возрастают от 20; 23 (ТР) до 27 .28 кДж/моль(ИМС).

6. Согласно совокупности результатов исследования, па электродах из различных УГМ с упорядоченной и разупорядоченной структурами независимо от воздействия различные внешних и внутренних факторов, в матрицах исследуемых материалов протекают две реакции:

- быстрое образование слоистых соединений графита анионного типа: (Li.CfjAy -1 стадия) в поверхностном слое, проводящем по ионам лития; на этой стадии при длительной поляризации возможно катодное восстановление растворителя и усиление пассивирующих свойств поверхности.

- последующее образование (1лхСб - II стадия) в более глубинных слоях материала электрода, куда литий проникает через ПС по межслоевым пространствам и заполняет вакантные места.

7. Установлено, что формирующийся ПС (1лхСбАу) определяет кинетику и механизм последующего образования LixCfl. Показано, что состав, структуру и свойства ПС можно направленно изменять при варьировании величины потенциала и времени катодной поляризации; изменении анионного состава электролита, природы растворителя; введении модифицирующих добавок в состав AM электрода; путем предварительной обработки компонентов активной массы в магнитном поле, с помощью ультразвука. В результате ускоряется процесс образования фазы Li и формируются активные, высокоэнергоемкие электроды с низкой величиной необратимой емкости. Процесс внедрения лития в такие структуры сопровождается образованием кластеров и ковалентных молекул лития со связями, подобными металлическим, что повышает проводимость AM электрода и улучшает эффективность при циклировании.

8. Предложены технологические рекомендации по изготовлению и эксплуатации С8СЮ3, LiAl и LixC6 электродов для литиевых и литий-ионных аккумуляторов прессованной и рулонной конструкции. Испытания опытных образцов и макетов источников тока систем LiAl/C8Cr03 и LixC6/C8Cr03 показали, что они отличаются высокой емкостью, эффективностью при циклировании, не склонны к саморазряду. Разработаны экологически и экономически оправданные методы регенерации и утилизации отработанных С8СЮ3 и подобраны оптимальные режимы этих процессов.

9. На основе экспериментально полученных зависимостей напряжения разряда от времени при различных величинах разрядного тока и температурах проведено феноменологическое моделирование разрядного процесса и проанализированы аналитические зависимости, описывающие связь емкости ЛА с величиной тока разряда. Показана применимость уравнения Пейкерта 1'Ч = К к литиевым источникам тока, определены константы «п» и «К». Установлено, что величина «п» практически не зависит от температуры, конструкции ЛА, способов модифицирования электродов. Постоянная «К», напротив, является линейной функцией температуры, зависит от состава активной массы и конструкции электродов.

Страницы: 1 2 

Смотрите также

Изоляция космических кораблей
...

Вулканизация каучуков
Фторкаучуки вулканизуются при нагревании смесей, содержащих вулканизующие агенты, или под действием излучений высокой энергии. Степень радиационной вулканизации фторкаучуков тем выше, чем больше со ...

Определение молярной массы диоксида углерода.
Цель работы - нахождение молярной  массы диоксида углерода по плотности газа на основе уравнения Менделеева Клапейрона. Молярная масса - это масса одного моля вещества.  Моль любого газообразног ...