И.Н. Бурмистров, Л.Г. Панова
Энгельсский технологический институт СГТУ
Необходимость создания технически эффективных, экономически выгодных, экологически безопасных и приемлемых технологически огнестойких светопрозрачных конструкций для строительного остекления в настоящее время не вызывает сомнения. Особое внимание следует обратить на слово «конструкция», так как достижение высокой степени огнестойкости возможно только при оптимальном сочетании параметров всех деталей в конструкции. К ним относят специальную раму, огнестойкий стеклопакет, состоящий из двух или более силикатных стёкол с полимерными или гелевыми прослойками, и специальные средства крепежа.
Конструкции, соответствующие классу остекления не ниже EI30, должны останавливать распространение всех составляющих пожара: огня, дыма и теплового излучения. Для достижения этой цели перспективно использовать триплексы из силикатного стекла и заливочных полимерных гелей. Применяемый гель должен реагировать на повышение температуры при пожаре. При этом положительный эффект достигается за счёт ряда факторов: испарение содержащейся в геле воды охлаждает конструкцию; структурирование полимерной составляющей образует каркас, удерживающий осколки стекла, и обеспечивает целостность конструкции; вспенивание геля обеспечивает высокую степень теплоизоляции уцелевшей части конструкции от высоких температур.
Данная работа посвящена разработке заливочных гелей для создания противопожарных многослойных светопрозрачных строительных конструкций.
В работе проведён анализ составов на основе следующих компонентов: состав «г1» – поливиниловый спирт (ПВС) и фосфорная кислота; состав «г2» – смесь аммониевых солей акриловых олигомеров, олигосахариды, водорастворимые силикаты натрия.
Основной задачей является максимально высокое содержание карбонизированного остатка сжигаемого геля и хорошая адгезия кокса к силикатному стеклу; а также достижение наибольшей вязкости композиции при температуре разложения и оптимальное количества летучих продуктов, вспенивающих состав.
На начальном этапе исследования был определён оптимальный состав гелей. Составы с лучшими реологическими свойствами приведены в таблице 1.
Таблица 1. Составы гелей г1, г2
|
Наименование компонента |
A |
B |
C |
D |
E |
F |
|
г1 |
10.72 |
34.81 |
54.47 |
– |
– |
– |
|
г2 |
– |
– |
64,39 |
3,04 |
25,40 |
7,17 |
В качестве основных методов исследования рассматриваемых составов были выбраны метод термогравиметрического анализа, инфракрасной спектроскопии и масштабные испытания готовых светопрозрачных конструкций в огневой печи. Методом инфракрасной спектроскопии установлено отсутствие для всех составов химических реакций между компонентами гелей. На основе инфракрасных спектров поглощения доказано, что в анализируемых составах основная масса воды связана полимерным гелем. Это подтверждается, по данным TG ТГА также повышенной температурой удаления воды из геля при его разложении.
Данные ТГА-анализа показывают, что разложение гелей протекает в две стадии. На первой стадии наблюдается испарение воды и разрушение гелевой структуры, при этом образуется эластичный клейкий остаток. Энергия активации этого процесса (определяли по данным DTG) для геля г1: Е1-1 = 130,30 кДж/моль. Процесс протекает в интервале температур 80 – 200 0С. Процесс удаления воды облегчается снижением вязкости состава на начальной стадии нагревания. На второй стадии протекают процессы окисления полимерной матрицы и образования карбонизованного остатка. Энергия активации процесса Е1-2 = 123,10 кДж/моль. Процесс протекает в интервале температур 300 – 900 0С.
Кинетика химических реакций
Одна
из особенностей химических реакций заключается в том, что они протекают во
времени. Одни реакции протекают медленно, месяцами, как, например, коррозия
железа. Другие заканчиваются очень быстро ...
Определение молярной массы диоксида
углерода.
Цель работы - нахождение
молярной массы диоксида углерода по плотности газа на основе уравнения
Менделеева Клапейрона.
Молярная масса -
это масса одного моля вещества. Моль любого газообразног ...
Методика обработки экспериментальных данных
Вся процедура обработки
экспериментальных данных может быть разделена на два этапа. На первом
производится первичная обработка сведений, полученных при проведении
эксперимента по химическом ...