Диапазон использования солнечного излучения чрезвычайно широк. Энергией Солнца питаются высоко температурные установки, концентрирующие поток лучей с помощью зеркал. В качестве аккумуляторов энергии в них используются как физические теплоносители, так и некоторые неорганические вещества, способные к циклическим реакциям термического разложения- синтеза (оксиды, гидраты, сульфаты, карбонаты). Устройства другого типа преобразуют энергию излучения в электрическую, тепловую или энергию химических реакций посредством фотофизических или фотохимических процессов. Среди фотохимических путей преобразования СЭ наиболее значимыми являются следующие:
· Фотокаталитическое разложение воды под действием металлокомплексных соединений;
· Создание «солнечных фотоэлектролизёров», основанных на фотоэлектронных переносах или фотогальваническом эффекте;
· Фотосинтез - наиболее эффективный биохимический способ преобразования энергии Солнца.
Наряду с ними значительный интерес представляют химические системы, способные аккумулировать СЭ в виде энергии напряжения химических связей. Такие системы удовлетворять требованиям , которые относятся как к фотохромному реагенту А и продукту В, так и к параметрам процесса.
А↔В+ΔН.
Основные требования сводятся следующему:
· Реагент А должен поглощать свет в УФ и видимых частях спектра (400-650 нм), так как более 50% СЕ, достигающей Земли, распределено в области 300-700 нм. Фотоизомер В, наоборот, не должен поглощать в этой области, чтобы избежать фотоинициирования обратной реакции. Во избежание потерь энергии оба компонента должны быть нелюминесцирующими;
· Обратная реакция должна иметь значительный тепловой эффект (>300 Дж/г);
· Для длительного сохранения запасённой фотопродуктом В энергии активационный барьер термического перехода В→А должен быть достаточно большим – порядка 100 кДж/моль;
· Прямая фотохимическая реакция должна характеризоваться высоким квантовым выходом, обратная подвержена каталитическому ускорению или тепловому инициированию;
· Прямой и обратный процессы должны характеризоваться высокими степенями превращения и отсутствием побочных продуктов;
· Вещества А и В должны достаточно дешёвыми, доступными, нетоксичными, взрывобезопасными и химически устойчивыми по отношению к атмосферной влаге и воздуху.
Среди органических систем, удовлетворяющих указанным выше условиям, наиболее важными являются следующие:
· Валентная изомеризация нитрон – оксазиридин;
· Геометрическая (Е)↔(Z) изомеризация производных индиго;
· Геометрическая изомеризация N – ацилированных аминов и нитрилов с последующей внутримолекулярной перегруппировкой;
· Термически обратимая реакция фотодимеризации производных антрацена.
Циклические реакции фотораспада – термической рекомбинации свойственны и некоторым неорганическим системам, например фоторазложению нитрозилхлорида:
NOCl ↔NO + 1/2Cl²
Основное преимущество органических систем перед неорганическими связано с возможностью широкого варьирования строения молекул с целью улучшения их спектральных характеристик как аккумуляторов и преобразователей СЭ.
Методика обработки экспериментальных данных
Вся процедура обработки
экспериментальных данных может быть разделена на два этапа. На первом
производится первичная обработка сведений, полученных при проведении
эксперимента по химическом ...
Физико-химические основы хроматографического процесса
Газовая хроматография — один из
наиболее перспективных физико-химических методов исследования, бурно
развивающийся в настоящее время. Создание и успешная разработка различных
вариантов газо ...