Пространственное движение одной частицы
Библиотека / Библиотека / Пространственное движение одной частицы Пространственное движение одной частицы
Страница 3

(4.10)

Подставляя (4.9) и (4.10 ) в (4.8), получаем

(4.11)

Каждый из одномерных операторов дифференцирования преобразу­ет лишь ту функцию-сомножитель которая содержит его же аргумент. Остальные функции-сомножители без нарушения равносильности уравнения (4.11) можно вынести влево за такой оператор:

4.1.2.10 соответствии с методом Фурье, слева домножаем выражение на и получаем

Отделяя любое из слагаемых, например, первое, вводим первую из констант связывающих отдельные компоненты решения

и т.д.

(4.12)

4.1.2.11. Суммируя левые части уравнений системы (4.12) и все константы в правой части, получаем

т.е. или (4.13)

Таким образом, параметры отдельных одномерных дифференциальных уравнений оказываются связанными между собой равенством (4.13).

4.1.2.12.При разделении переменных многомерного дифференци­ального уравнения можно их предварительно группировать. В таком случае в выражениях (4.8 ) – (4.10)под каждым из символов может подразумеваться целый набор переменных. Именно таким об­разом производится анализ движения в системе многих частиц. Внача­ле очень сложное и громоздкое исходное уравнение всегда претерпе­вает подготовительное преобразование, состоящее в том, что произ­водится выделение отдельных уравнений, относящихся к индивидуальным частицам.

4.1.2.13. Встречаются ситуации, когда, на первый взгляд, раз­делить переменные невозможно, так как оператор содержит слож­ные функции, включающие все эти переменные либо часть из них. В таких случаях часто к цели ведёт замена переменных, например, пе­реход от декартовых координат х, у к полярным или к комбинации исходных декартовых. Преобразования, связанные со сменой координат, и в классической и в квантовой механике являются самым обычным делом. Выбор подходящей системы переменных часто подсказывает выра­жение потенциальной энергии . Ниже мы встретимся с такими примерами.

4.1.2.14. Следует отметить, что простая аддитивная форма опе­ратора не является непременным условием разделения переменных в дифференциальном уравнении (4.8). Встречаются и более сложные конструкции операторов, допускающие возможность использования основных принципов решения дифференциальных уравнений в частных про­изводных по методу Фурье с разделением переменных. Ниже мы столкнемся с такими случаями.

Различным комбинациям квантовых чисел может отвечать одно и то же значение суммы квадратов В этом случае все такие состояния относятся к одному вырожденному уровню. Обозначим их число – кратность вырождения уровня – буквой g. На примере шести низших уровней кубического "ящика" проследим их вырождение . Для этого, как обычно, составим таблицу состояний и уровней (табл. 4. 1.) и изобразим энергетическую диаграмму этой системы ( рис. 4.1.).

Квантовые числа состояний

()

Энергетические уровни

Кратность вырождения уровня g

1,1,1

3

1

1,1,2

1,2,1

2,1,1

6

3

1,2,2

2,1,2

2,2,1

9

3

1,1,3

1,3,1

3,1,1

11

3

2,2,2

12

1

1,2,3

1,3,2

2,1,3

3,1,2

2,3,1

3,2,1

14

6

Страницы: 1 2 3 4

Смотрите также

Поливинилацетат (ПВА)
Среди изобилия самых разнообразных по строению и свойствам органических соединений есть особый класс - полимеры (от греч. «поли» - «много» и «мерос» - «часть»). Для этих веществ, прежде все ...

Методика обработки экспериментальных данных
Вся процедура обработки экспериментальных данных может быть разделена на два этапа. На первом производится первичная обработка сведений, полученных при проведении эксперимента по химическом ...

Каталитический риформинг
Бензины являются одним из основных видов горючего для двигателей современной техники. Автомобильные и мотоциклетные, лодочные и авиационные поршневые двигатели потребляют бензины. В настоящ ...