Химия одиночной молекулы

Сегодня ученые могут увидеть и распознать одну молекулу и даже манипулировать ей. Новое знание позволяет, например, увидеть поверхностные комплексы, катализирующие многие процессы. А главное, что можно уже не только увидеть, но и манипулировать молекулами, и моделировать из них разные наноструктуры.

Основное в химии одиночных молекул - анали­тические методы. Сканирующий электронный микроскоп (СТМ) был создан в 1982 году, и тог­да же во многих научных центрах начали актив­но развиваться методы, с помощью которых можно наблюдать за отдельными молекулами. Хотя теоретически все было подсчитано и пред­сказано, понадобилось почти 20 лет, чтобы по­лучить первый колебательный спектр одной ад­сорбированной частицы.

Рисунок 1 – Сканирующая туннельная микроскопия

Идея сканирующей туннельной мик­роскопии проста (рис. 1) - игла туннель­ного микроскопа направлена на моле­кулу, расположенную на поверхности твердого тела. Расстояние между иг­лой и молекулой должно быть больше, чем размеры молекулы, чтобы не пе­рекрывались атомные орбитали острия и поверхности. Между острием иглы и поверхностью подают напряжение. В какой-то момент напряжение, а значит, и энергия туннелирующих электронов попадает в резонанс с электронно-ко­лебательными уровнями адсорбиро­ванной молекулы, и происходит рез­кий скачок проводимости. Значение на­пряжения, при котором происходит скачок туннельного тока, строго инди­видуально для каждой молекулы, а по­тому дает ее точный «портрет».

Безусловно, улучшается качество знания и его точ­ность. Вместе с тем есть области, в которых химия одиночных молекул и связанные с ней технологии приносят действительно новые и иногда неожи­данные знания. Например, гетероген­ный катализ и биологическое подраз­деление химии ожидает подъем имен­но на базе новых технологий.

Хи­мия одиночных молекул - это в пер­вую очередь инструмент для управле­ния химическими реакциями, а также для создания новых высоких молеку­лярных технологий.

Исследователи учатся манипулировать отдельными молекулами и атомами. Все это необ­ходимо для создания молекулярных конструкций — элементов наноэлектроники, нанооптики или наномеханики. Возможно, в этом главное дости­жение химии одиночных молекул.

Если подытожить все, что уже на­учились делать с отдельными молеку­лами, то получится весьма внушитель­ный список: ученые умеют вращать одну молекулу и ориентировать ее поверхности; заставлять ее перехо­дить с одного места на другое (не только по плоскости, но и по вертика­ли - с иглы на поверхность и обрат­но); помещать в нужное место и раз­рывать. Зачастую все эти манипуля­ции контролируют с помощью всего двух параметров — тока и напряже­ния.

Сканирующие туннельные микро­скопы и родственные им приборы ис­пользуют в качестве рабочих инстру­ментов, чтобы из отдельных атомов строить наномасштабные конструкции. Свойства подобных наноконструкций уникальны. Они могут иметь рекорд­ную твердость или легкость, высокую адсорбционную или реакционную спо­собности. Можно направленно изме­нять проводимость таких конструкций, варьируя их атомное строение или воздействуя магнитными полями. Эти технологии порождают множество идей: как применять такие наноматериалы в разных областях химии, элек­троники, техники и медицины.

Смотрите также

Выводы
Таким образом, в данной работе рассмотрен акридон, его свойства, способы получения и применение. Приведены различные механизмы получения гетероциклических соединений реакциями конденсации. Предложе ...

Учёт неидеальности растворов в кинетических исследованиях. "Идеальные" и "неидеальные" поверхности в гетерогенном катализе
...

Методика обработки экспериментальных данных
Вся процедура обработки экспериментальных данных может быть разделена на два этапа. На первом производится первичная обработка сведений, полученных при проведении эксперимента по химическом ...