Модель и метод моделирования
Страница 2

При моделировании системы не включали частицы растворителя. Чтобы сымитировать эффект растворителя и эволюцию системы в контакте с термостатом температуры T, в уравнение движения Ланжевена добавляют некоррелированный член.

miFi = Fi –Гr + Ri , I = 1. 2, …, N (3.5)

где mi = 1 – масса мономерного звена, Fi = -Ñri H (r) - (r) – постоянная сила действующая на звена i, R описывает случайные броуновские силы, действующие на каждое мономерное звено, Г – учитывает вязкость растворителя. Величины R и Г связаны между собой флуктационной-диссипативной теоремой,

Rai(0)´Rai(t)ñ = 2ГikBTd(t), a = x, y, z, и обеспечивает постоянство температуры. Заметим, что если Г включить в уравнение без члена R, то система просто диссипирует. Параметр Г зависит от площади доступной растворителю поверхности (SASA). Чтобы найти значение SASA для данной конформации, производится аналитическое вычисление площади поверхности Ai для каждого заданного звена. Определив Ai можно найти Гi как Гi = Г0Аi/Amax , где Amax – максимальное значение площади поверхности доступной растворителю мономера для изучаемой модели и стандартное значение Г0 принимается равным единице. Весовой коэффициент Ai/Amax показывает степень подверженности растворителю мономера i. Если значение SASA для данного мономера равно нулю, то броуновская сила и сила трения равны нулю и уравнение Ланжевена (3.5) редуцируется в уравнение движения Ньютона. Обычно это происходит, когда звено расположено в ядре глобулы. Наоборот, мономерное звено, находящееся на поверхности глобулы, сильно сольватировано. Это значит, что значение Ai становится близким к Amax, следовательно значение Гi становиться близким Г0. Стандартная температура равна T = 1 e/kB. При интегрировании уравнения движения выбирается шаг интегрирования ∆t = sÖm/e , использовав численный алгоритм Верлета.

Страницы: 1 2 

Смотрите также

Зарождение химии
Представления  древнегреческих натурфилософов  оставались ос-новными идейными истоками естествознания вплоть до XVIII в. До начала эпохи Возрождения  в науке господствовали представления  А ...

Бериллий
   Соединения бериллия  в  виде  драгоценных камней были известны еще в древности.  С давних пор люди искали и разрабатывали месторождения аквамаринов, изумрудов и бериллов. Есть свидетельс ...

Акриламид и полиакриламид: получение и свойства
...