Введение
Страница 1

Концепция эволюции является одним из краеугольных камней в современных естественных науках: в космологии обсуждается эволюция вселенной, в геологии эволюция Земли, в биологии эволюция живого мира. Эту идею можно использовать и в полимерной науке [1,2]. Соответствующие положения этой проблемы достаточно ясны. В настоящее время биополимеры ( белки, ДНК, РНК) обладают сложной первичной структурой (последовательность мономерных звеньев ) которая определяет их функции и структуру ( в том числе и третичную структуру глобулярных белков). Поэтому эти последовательности ( 20-ти буквенный алфавит в случае белков и 4-х буквенный в случае ДНК и РНК) должны значительно отличаться от случайных и часто проявляют значительные корреляции на различных массштабах. Другими словами, естественно ожидать, что количество информации в таких последовательностях относительно высоко сравнительно высоко по сравнению со случайными (ДНК содержит всю генетическую информацию).

С другой стороны, на начальном этапе до биологической эволюции могли образовываться только случайные последовательности или последовательности с короткодействующими корреляциями. Можно добавить, что по ходу молекулярной эволюции первичные структуры сополимеров становились всё сложнее и сложнее, пока не достигли уровня сложности современных биополимеров. Исследование различных возможностей эволюции последовательностей сополимеров является областью, где концепцию эволюции можно использовать в контексте науки оп полимерах.

Стоит заметить, что, так как количество информации последовательности можно определить количественно, то весь процесс эволюции биополимерных последовательностей может быть точно определён в математических терминах, которые не всегда применимы для других случаях эволюции.

С другой стороны, сформулированные фундаментальные проблемы чрезвычайно сложны из-за отсутствия прямой информации о ранней добиологической эволюции. Поэтому особый интерес представляют модельные системы эволюции последовательностей, которые показывают различные возможности появления сложной статистики и дальнодействующих корреляций в последовательностях. Так как при помощи случайных мутаций невозможно увеличить количество информации последовательности, то такие модельные системы должны принимать во внимание связь между конформацией полимерной цепи и эволюцией последовательности.

Один из вариантов конформационно-зависимого дизайна сополимеров, который ведёт к статистически достаточно сложным последовательностям рассмотрен в статьях [3,4,5]. Подход заключается в модифицировании поверхности глобулы. Звеньям, находящимся на поверхности присваивается индекс Р (гидрофильные звенья), а находящимся в ядре глобулы – Н (гидрофобные). Конформация полученного сополимера зависит от Н-Н, Н-Р и Р-Р взаимодействий.

Такие сополимеры были названы в статье [3] белковоподобными сополимерами, так как они отражают одну из важных особенностей реальных глобулярных белков: возможность образования плотного гидрофобного ядра, стабилизированным гидрофильными петлями, в глобулярной конформации. Благодаря этой особенности эти белки в глобулярной конформации.не выпадают в осадок в растворе Следует отметить, что образование гидрофильных звеньев является только одним из свойств белков, поэтому белковоподобные сополимеры не имеют общего с реальными белками. Можно говорить только о сходстве белковоподобных сополимеров и сополимеров, появляющиеся на ранних этапах эволюции.

Страницы: 1 2